IEEE/CAA Journal of Automatica Sinica
Citation: | K. K. Zhang, C. Keliris, T. Parisini, B. Jiang, and M. M. Polycarpou, “Passive attack detection for a class of stealthy intermittent integrity attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 898–915, Apr. 2023. doi: 10.1109/JAS.2023.123177 |
[1] |
A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-physical systems,” in Proc. 28th Int. Conf. Distributed Computing Systems Workshops, Beijing, China, 2008, pp. 495–500.
|
[2] |
S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H. Johansson, and A. Chakrabortty, “A systems and control perspective of CPS security,” Annu. Rev. Control, vol. 47, pp. 394–411, Jan. 2019. doi: 10.1016/j.arcontrol.2019.04.011
|
[3] |
V. L. Do, L. Fillatre, I. Nikiforov, and P. Willett, “Security of SCADA systems against cyber-physical attacks,” IEEE Aerosp. Electron. Syst. Mag., vol. 32, no. 5, pp. 28–45, May 2017. doi: 10.1109/MAES.2017.160047
|
[4] |
A. Hobbs, “The colonial pipeline hack: Exposing vulnerabilities in U.S. cybersecurity,” 2021. [Online]. Available: https://sk.sagepub.com/cases/colonial-pipeline-hack-exposing-vulnerabilities-us-cybersecurity.
|
[5] |
W. L. Duo, M. C. Zhou, and A. Abusorrah, “A survey of cyber attacks on cyber physical systems: Recent advances and challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 784–800, May 2022. doi: 10.1109/JAS.2022.105548
|
[6] |
Y. L. Mo and B. Sinopoli, “Secure control against replay attacks,” in Proc. 47th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, USA, 2009, pp. 911–918.
|
[7] |
R. S. Smith, “Covert misappropriation of networked control systems: Presenting a feedback structure,” IEEE Control Syst. Mag., vol. 35, no. 1, pp. 82–92, Feb. 2015. doi: 10.1109/MCS.2014.2364723
|
[8] |
A. Barboni, H. Rezaee, F. Boem, and T. Parisini, “Detection of covert cyber-attacks in interconnected systems: A distributed model-based approach,” IEEE Trans. Autom. Control, vol. 65, no. 9, pp. 3728–3741, Sept. 2020. doi: 10.1109/TAC.2020.2998765
|
[9] |
A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure control framework for resource-limited adversaries,” Automatica, vol. 51, pp. 135–148, Jan. 2015. doi: 10.1016/j.automatica.2014.10.067
|
[10] |
Q. R. Zhang, K. Liu, D. Y. Han, G. Z. Su, and Y. Q. Xia, “Design of stealthy deception attacks with partial system knowledge,” IEEE Trans. Autom. Control, vol. 68, no. 2, pp. 1069–1076, Feb. 2023. doi: 10.1109/TAC.2022.3146079
|
[11] |
A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, “Secure control systems: A quantitative risk management approach,” IEEE Control Syst. Mag., vol. 35, no. 1, pp. 24–45, Feb. 2015. doi: 10.1109/MCS.2014.2364709
|
[12] |
H. S. Sánchez, D. Rotondo, T. Escobet, V. Puig, and J. Quevedo, “Bibliographical review on cyber attacks from a control oriented perspective,” Annu. Rev. Control, vol. 48, pp. 103–128, Sept. 2019. doi: 10.1016/j.arcontrol.2019.08.002
|
[13] |
T. Y. Zhang and D. Ye, “False data injection attacks with complete stealthiness in cyber-physical systems: A self-generated approach,” Automatica, vol. 120, p. 109117, Oct. 2020. doi: 10.1016/j.automatica.2020.109117
|
[14] |
K. K. Zhang, C. Keliris, T. Parisini, and M. M. Polycarpou, “Stealthy integrity attacks for a class of nonlinear cyber-physical systems,” IEEE Trans. Autom. Control, vol. 67, no. 12, pp. 6723–6730, Dec. 2022. doi: 10.1109/TAC.2021.3131656
|
[15] |
A. Y. Lu and G. H. Yang, “Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service,” IEEE Trans. Autom. Control, vol. 63, no. 6, pp. 1813–1820, 2018. doi: 10.1109/TAC.2017.2751999
|
[16] |
H. Zhang, P. Cheng, L. Shi, and J. M. Chen, “Optimal denial-of-service attack scheduling with energy constraint,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 3023–3028, Nov. 2015. doi: 10.1109/TAC.2015.2409905
|
[17] |
H. Zhang, Y. F. Qi, J. F. Wu, L. K. Fu, and L. D. He, “DoS attack energy management against remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 383–394, Mar. 2018. doi: 10.1109/TCNS.2016.2614099
|
[18] |
S. Amin, A. A. Cárdenas, and S. S. Sastry, “Safe and secure networked control systems under denial-of-service attacks,” in Proc. 12th Int. Workshop on Hybrid Systems: Computation and Control, San Francisco, USA, 2009, pp. 31–45.
|
[19] |
A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Revealing stealthy attacks in control systems,” in Proc. 50th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, USA, 2012, pp. 1806–1813.
|
[20] |
F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identification in cyber-physical systems,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2715–2729, Nov. 2013. doi: 10.1109/TAC.2013.2266831
|
[21] |
R. S. Smith, “A decoupled feedback structure for covertly appropriating networked control systems,” IFAC Proc. Vol., vol. 44, no. 1, pp. 90–95, Jan. 2011. doi: 10.3182/20110828-6-IT-1002.01721
|
[22] |
Y. B. Mao, H. Jafarnejadsani, P. Zhao, E. Akyol, and N. Hovakimyan, “Novel stealthy attack and defense strategies for networked control systems,” IEEE Trans. Autom. Control, vol. 65, no. 9, pp. 3847–3862, Sept. 2020. doi: 10.1109/TAC.2020.2997363
|
[23] |
Y. L. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks on SCADA systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1396–1407, Jul. 2014. doi: 10.1109/TCST.2013.2280899
|
[24] |
R. M. G. Ferrari and A. M. H. Teixeira, “A switching multiplicative watermarking scheme for detection of stealthy cyber-attacks,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2558–2573, Jun. 2021. doi: 10.1109/TAC.2020.3013850
|
[25] |
A. Hoehn and P. Zhang, “Detection of covert attacks and zero dynamics attacks in cyber-physical systems,” in Proc. American Control Conf., Boston, USA, 2016, pp. 302–307.
|
[26] |
S. Weerakkody and B. Sinopoli, “Detecting integrity attacks on control systems using a moving target approach,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 5820–5826.
|
[27] |
P. Griffioen, S. Weerakkody, and B. Sinopoli, “A moving target defense for securing cyber-physical systems,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2016–2031, May 2021. doi: 10.1109/TAC.2020.3005686
|
[28] |
M. M. Polycarpou and A. J. Helmicki, “Automated fault detection and accommodation: A learning systems approach,” IEEE Trans. Syst. Man Cybern., vol. 25, no. 11, pp. 1447–1458, Nov. 1995. doi: 10.1109/21.467710
|
[29] |
S. X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. 2nd ed. London, UK: Springer, 2013.
|
[30] |
M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control. 2nd ed. Berlin, Germany: Springer, 2006.
|
[31] |
Y. K. Wu, B. Jiang, and N. Y. Lu, “A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 10, pp. 2108–2118, Oct. 2019. doi: 10.1109/TSMC.2017.2757264
|
[32] |
K. K. Zhang, B. Jiang, X. G. Yan, and Z. H. Mao, “Incipient fault detection for traction motors of high-speed railways using an interval sliding mode observer,” IEEE Trans. Intell. Transport. Syst., vol. 20, no. 7, pp. 2703–2714, Jul. 2019. doi: 10.1109/TITS.2018.2878909
|
[33] |
C. Keliris, M. M. Polycarpou, and T. Parisini, “An integrated learning and filtering approach for fault diagnosis of a class of nonlinear dynamical systems,” IEEE Trans. Neural Netw. Learning Syst., vol. 28, no. 4, pp. 988–1004, Apr. 2017. doi: 10.1109/TNNLS.2015.2504418
|
[34] |
M. Taheri, K. Khorasani, I. Shames, and N. Meskin, Cyber Attack and machine induced fault detection and isolation methodologies for cyber-physical systems, 2020. [Online]. Available: https://arxiv.org/abs/2009.06196.
|
[35] |
K. K. Zhang, M. M. Polycarpou, and T. Parisini, “Enhanced anomaly detector for nonlinear cyber-physical systems against stealthy integrity attacks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 13682–13687, Jan. 2020. doi: 10.1016/j.ifacol.2020.12.870
|
[36] |
K. K. Zhang, C. Keliris, M. M. Polycarpou, and T. Parisini, “Detecting stealthy integrity attacks in a class of nonlinear cyber-physical systems: A backward-in-time approach,” Automatica, vol. 141, p. 110262, Jul. 2022. doi: 10.1016/j.automatica.2022.110262
|
[37] |
E. Kontouras, A. Tzes, and L. Dritsas, “Hybrid detection of intermittent cyber-attacks in networked power systems,” Energies, vol. 12, no. 24, p. 4625, Dec. 2019. doi: 10.3390/en12244625
|
[38] |
S. Gao, H. Zhang, Z. P. Wang, C. Huang, and H. C. Yan, “Optimal injection attack strategy for cyber-physical systems under resource constraint: A game approach,” IEEE Trans. Control Netw. Syst., to be published.
|
[39] |
J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer, 2012.
|
[40] |
X. D. Zhang, M. M. Polycarpou, and T. Parisini, “Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation,” Automatica, vol. 46, no. 2, pp. 290–299, 2010. doi: 10.1016/j.automatica.2009.11.014
|
[41] |
K. K. Zhang, B. Jiang, X. G. Yan, and J. Shen, “Interval sliding mode observer based incipient sensor fault detection with application to a traction device in China railway high-speed,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2585–2597, 2019. doi: 10.1109/TVT.2019.2894670
|
[42] |
M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application. Englewood Cliffs: Prentice-Hall, 1993.
|
[43] |
B. D. Anderson and J. B. Moore, Optimal Filtering. North Chelmsford, USA: Courier Corporation, 2012.
|
[44] |
M. Green and D. J. N. Limebeer, Linear Robust Control. New York, USA: Dover Publications, 2012.
|
[45] |
D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Hoboken, USA: John Wiley & Sons, 2006.
|
[46] |
G. A. Einicke, Smoothing, Filtering and Prediction: Estimating the Past, Present and Future. Rijeka: IntechOpen, 2012.
|
[47] |
X. B. Li and K. M. Zhou, “A time domain approach to robust fault detection of linear time-varying systems,” Automatica, vol. 45, no. 1, pp. 94–102, Jan. 2009. doi: 10.1016/j.automatica.2008.07.017
|
[48] |
R. N. Banavar and J. L. Speyer, “A linear-quadratic game approach to estimation and smoothing,” in Proc. American Control Conf., Boston, USA, 1991, pp. 2818–2822.
|
[49] |
H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Birkhäuser Verlag, Basel, 2012.
|
[50] |
G. Basile and G. Marro, Controlled and Conditioned Invariants in Linear System Theory. Englewood Cliffs: Prentice Hall, 1992.
|
[51] |
Q. J. Xia, M. Rao, Y. Q. Ying, and X. M. Shen, “Adaptive fading Kalman filter with an application,” Automatica, vol. 30, no. 8, pp. 1333–1338, Aug. 1994. doi: 10.1016/0005-1098(94)90112-0
|
[52] |
Y. J. Zhang, J. F. Zhang, X. K. Liu, and Z. Liu, “Quantized-output feedback model reference control of discrete-time linear systems,” Automatica, vol. 137, p. 110027, Mar. 2022. doi: 10.1016/j.automatica.2021.110027
|
[53] |
J. Guo, Y. J. Zhang, J. F. Zhang, and X. K. Liu, “Finite quantized-output feedback tracking control of possibly non-minimum phase linear systems,” IEEE Control Syst. Lett., vol. 6, pp. 2407–2412, Mar. 2022. doi: 10.1109/LCSYS.2022.3159130
|
[54] |
M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 10, pp. 5467–5479, Oct. 2022. doi: 10.1109/TNNLS.2021.3070824
|
[55] |
M. L. Lv, B. De Schutter, C. Shi, and S. Baldi, “Logic-based distributed switching control for agents in power-chained form with multiple unknown control directions,” Automatica, vol. 137, p. 110143, Mar. 2022. doi: 10.1016/j.automatica.2021.110143
|
[56] |
Y. Liu, D. Y. Yao, L. J. Wang, and S. J. Lu, “Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 1, pp. 264–274, Jan. 2023. doi: 10.1109/TSMC.2022.3179444
|