IEEE/CAA Journal of Automatica Sinica
Citation: | T. D. Wei and X. D. Li, “Fixed-time and predefined-time stability of impulsive systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1086–1089, Apr. 2023. doi: 10.1109/JAS.2023.123147 |
[1] |
S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, Jan. 2000. doi: 10.1137/S0363012997321358
|
[2] |
F. Lopez-Ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, “Conditions for fixed-time stability and stabilization of continuous autonomous systems,” Syst. Control Lett., vol. 129, pp. 26–35, Jul. 2019. doi: 10.1016/j.sysconle.2019.05.003
|
[3] |
R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, and M. Defoort, “Enhancing the settling time estimation of a class of fixed-time stable systems,” Int. J. Robust Nonlinear Control, vol. 29, no. 12, pp. 4135–4148, Aug. 2019. doi: 10.1002/rnc.4600
|
[4] |
A. J. Muñoz-Vázquez and J. D. Sánchez-Torres, “Predefined-time control of cooperative manipulators,” Int. J. Robust Nonlinear Control, vol. 30, no. 17, pp. 7295–7306, Nov. 2020. doi: 10.1002/rnc.5171
|
[5] |
E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, and A. G. Loukianov, “A Lyapunov-like characterization of predefined-time stability,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4922–4927, Nov. 2020. doi: 10.1109/TAC.2020.2967555
|
[6] |
B. Zhou and Y. Shi, “Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback,” IEEE Trans. Autom. Control, vol. 66, no. 12, pp. 6123–6130, Dec. 2021. doi: 10.1109/TAC.2021.3061645
|
[7] |
Y. Liu, H. Li, Z. Zuo, X. Li, and R. Lu, “An overview of finite/fixed-time control and its application in engineering systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2106–2120, Dec. 2022. doi: 10.1109/JAS.2022.105413
|
[8] |
X. Li, D. W. C. Ho, and J. Cao, “Finite-time stability and settling-time estimation of nonlinear impulsive systems,” Automatica, vol. 99, pp. 361–368, Jan. 2019. doi: 10.1016/j.automatica.2018.10.024
|
[9] |
X. Yang, J. Lam, D. W. Ho, and Z. Feng, “Fixed-time synchronization of complex networks with impulsive effects via nonchattering control,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5511–5521, Nov. 2017. doi: 10.1109/TAC.2017.2691303
|
[10] |
S. Zhu, J. Zhou, J. Lü, and J.-A. Lu, “Finite-time synchronization of impulsive dynamical networks with strong nonlinearity,” IEEE Trans. Autom. Control, vol. 66, no. 8, pp. 3550–3561, Aug. 2021. doi: 10.1109/TAC.2020.3022532
|
[11] |
M. A. Jamal, R. Kumar, S. Mukhopadhyay, and S. Das, “Fixed-time stability of dynamical systems with impulsive effects,” J. Franklin Inst., vol. 359, no. 7, pp. 3164–3182, May 2022. doi: 10.1016/j.jfranklin.2022.02.016
|
[12] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations. Singapore: World Scientific, 1995.
|
[13] |
N. Li, X. Wu, J. Feng, and J. Lü, “Fixed-time synchronization of complex dynamical networks: A novel and economical mechanism,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 4430–4440, Jun. 2022. doi: 10.1109/TCYB.2020.3026996
|
[14] |
H. Min, S. Xu, B. Zhang, Q. Ma, and D. Yuan, “Fixed-time Lyapunov criteria and state-feedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539
|
[15] |
A. P. S. Parsegov and P. Shcherbakov, “Nonlinear fixed-time control protocol for uniform allocation of agents on a segment,” in Proc. IEEE Conf. Decision Control, Maui, USA, 2012, pp. 7732−7737.
|