A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. J. Wang, W. Wei, J. Z. F. Pang, F. Liu, B. Yang, X. P. Guan, and S. W. Mei, “Online optimization in power systems with high penetration of renewable generation: Advances and prospects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 839–858, Apr. 2023. doi: 10.1109/JAS.2023.123126
Citation: Z. J. Wang, W. Wei, J. Z. F. Pang, F. Liu, B. Yang, X. P. Guan, and S. W. Mei, “Online optimization in power systems with high penetration of renewable generation: Advances and prospects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 839–858, Apr. 2023. doi: 10.1109/JAS.2023.123126

Online Optimization in Power Systems With High Penetration of Renewable Generation: Advances and Prospects

doi: 10.1109/JAS.2023.123126
Funds:  This work was supported by the National Natural Science Foundation of China (62103265), the “ChenGuang Program” Supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission of China (20CG11), and the Young Elite Scientists Sponsorship Program by Cast of China Association for Science and Technology
More Information
  • Traditionally, offline optimization of power systems is acceptable due to the largely predictable loads and reliable generation. The increasing penetration of fluctuating renewable generation and internet-of-things devices allowing for fine-grained controllability of loads have led to the diminishing applicability of offline optimization in the power systems domain, and have redirected attention to online optimization methods. However, online optimization is a broad topic that can be applied in and motivated by different settings, operated on different time scales, and built on different theoretical foundations. This paper reviews the various types of online optimization techniques used in the power systems domain and aims to make clear the distinction between the most common techniques used. In particular, we introduce and compare four distinct techniques used covering the breadth of online optimization techniques used in the power systems domain, i.e., optimization-guided dynamic control, feedback optimization for single-period problems, Lyapunov-based optimization, and online convex optimization techniques for multi-period problems. Lastly, we recommend some potential future directions for online optimization in the power systems domain.

     

  • loading
  • [1]
    IRENA. Renewable energy statistics 2022. [Online]. Available: https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022. Accessed on: Jul. 2022.
    [2]
    Z. J. Guo, W. Wei, L. J. Chen, Y. Chen, and S. W. Mei, “Real-time self-dispatch of a remote wind-storage integrated power plant without predictions: Explicit policy and performance guarantee,” IEEE Open Access J. Power Energy, vol. 8, pp. 484–496, Jun. 2021. doi: 10.1109/OAJPE.2021.3089583
    [3]
    D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2941–2962, Nov. 2017. doi: 10.1109/TSG.2017.2720471
    [4]
    Z. Q. Zhang, C. X. Dou, D. Yue, and B. Zhang, “Predictive voltage hierarchical controller design for islanded microgrids under limited communication,” IEEE Trans. Circuits Syst. I: Regular Pap., vol. 69, no. 2, pp. 933–945, Feb. 2022. doi: 10.1109/TCSI.2021.3117048
    [5]
    Z. Q. Zhang, C. X. Dou, D. Yue, Y. D. Zhang, B. Zhang, and Z. J. Zhang, “Event-triggered hybrid voltage regulation with required BESS sizing in high-PV-penetration networks,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2614–2626, Jul. 2022. doi: 10.1109/TSG.2022.3168440
    [6]
    F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed control and economic optimality in microgrids,” IEEE Trans. Control Netw. Syst., vol. 3, no. 3, pp. 241–253, Sept. 2016. doi: 10.1109/TCNS.2015.2459391
    [7]
    C. MacIver, K. Bell, and M. Nedd, “An analysis of the August 9th 2019 GB transmission system frequency incident,” Electr. Power Syst. Res., vol. 199, p. 107444, Oct. 2021. doi: 10.1016/j.jpgr.2021.107444
    [8]
    A. Jokic, “Price-based optimal control of electrical power systems,” Ph.D. dissertation, Eindhoven Univ. Technology, Eindhoven, the Netherlands, 2007.
    [9]
    A. Jokic, M. Lazar, and P. J. van den Bosch, “On constrained steady-state regulation: Dynamic KKT controllers,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2250–2254, Sept. 2009. doi: 10.1109/TAC.2009.2026856
    [10]
    C. H. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-side primary frequency control in power systems,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1177–1189, May 2014. doi: 10.1109/TAC.2014.2298140
    [11]
    N. Li, C. H. Zhao, and L. J. Chen, “Connecting automatic generation control and economic dispatch from an optimization view,” IEEE Trans. Control Netw. Syst., vol. 3, no. 3, pp. 254–264, Sept. 2016. doi: 10.1109/TCNS.2015.2459451
    [12]
    F. Zohrizadeh, C. Josz, M. Jin, R. Madani, J. Lavaei, and S. Sojoudi, “A survey on conic relaxations of optimal power flow problem,” Eur. J. Oper. Res., vol. 287, no. 2, pp. 391–409, Dec. 2020. doi: 10.1016/j.ejor.2020.01.034
    [13]
    L. W. Gan and S. H. Low, “An online gradient algorithm for optimal power flow on radial networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 625–638, Mar. 2016. doi: 10.1109/JSAC.2016.2525598
    [14]
    M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial distribution systems,” IEEE Trans. Power Delivery, vol. 4, no. 1, pp. 725–734, Jan. 1989. doi: 10.1109/61.19265
    [15]
    T. Stegink, C. De Persis, and A. van der Schaft, “A unifying energy-based approach to stability of power grids with market dynamics,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2612–2622, Jun. 2017. doi: 10.1109/TAC.2016.2613901
    [16]
    J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability of droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp. 2457–2469, Oct. 2014. doi: 10.1016/j.automatica.2014.08.009
    [17]
    C. De Persis and N. Monshizadeh, “Bregman storage functions for microgrid control,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 53–68, Jan. 2018. doi: 10.1109/TAC.2017.2709246
    [18]
    Z. J. Wang, F. Liu, S. H. Low, C. H. Zhao, and S. W. Mei, “Distributed frequency control with operational constraints, part I: Per-node power balance,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 40–52, Jan. 2019. doi: 10.1109/TSG.2017.2731810
    [19]
    Jokić, M. Lazar, and P. J. van den Bosch, “Real-time control of power systems using nodal prices,” Int. J. Electr. Power Energy Syst., vol. 31, no. 9, pp. 522–530, Oct. 2009. doi: 10.1016/j.ijepes.2009.03.034
    [20]
    R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007. doi: 10.1109/JPROC.2006.887293
    [21]
    H. H. Xin, Z. H. Lu, Y. Liu, and D. Q. Gan, “A center-free control strategy for the coordination of multiple photovoltaic generators,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1262–1269, May 2014. doi: 10.1109/TSG.2014.2302310
    [22]
    F. H. Guo, C. Y. Wen, J. F. Mao, and Y. D. Song, “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4355–4364, Jul. 2015. doi: 10.1109/TIE.2014.2379211
    [23]
    J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo, “Secondary frequency and voltage control of islanded microgrids via distributed averaging,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7025–7038, Nov. 2015. doi: 10.1109/TIE.2015.2436879
    [24]
    X. Y. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2764–2776, Jul. 2018. doi: 10.1109/TSG.2016.2619486
    [25]
    C. H. Zhao, E. Mallada, and F. Dörfler, “Distributed frequency control for stability and economic dispatch in power networks,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 2359–2364.
    [26]
    S. T. Cady, A. D. Domínguez-García, and C. N. Hadjicostis, “A distributed generation control architecture for islanded AC micro-grids,” IEEE Trans. Control Syst. Technol., vol. 23, no. 5, pp. 1717–1735, Sept. 2015. doi: 10.1109/TCST.2014.2381601
    [27]
    F. Dörfler and S. Grammatico, “Gather-and-broadcast frequency control in power systems,” Automatica, vol. 79, pp. 296–305, May 2017. doi: 10.1016/j.automatica.2017.02.003
    [28]
    E. Weitenberg, Y. Jiang, C. H. Zhao, E. Mallada, C. De Persis, and F. Dörfler, “Robust decentralized secondary frequency control in power systems: Merits and tradeoffs,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 3967–3982, Oct. 2019. doi: 10.1109/TAC.2018.2884650
    [29]
    J. D. Watson and I. Lestas, “Frequency and voltage regulation in hybrid AC/DC networks,” IEEE Trans. Control Syst. Technol., vol. 29, no. 5, pp. 1839–1849, Sept. 2021. doi: 10.1109/TCST.2020.3022331
    [30]
    Z. J. Wang, L. J. Chen, F. Liu, Y i, M. Cao, S. C. Deng, and S. W. Mei, “Asynchronous distributed power control of multimicrogrid systems,” IEEE Trans. Control Netw. Syst., vol. 7, no. 4, pp. 1960–1973, Dec. 2020. doi: 10.1109/TCNS.2020.3018703
    [31]
    J. G. Lai, X. Q. Lu, X. H. Yu, and A. Monti, “Stochastic distributed secondary control for AC microgrids via event-triggered communication,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 2746–2759, Jul. 2020. doi: 10.1109/TSG.2020.2966691
    [32]
    M. H. Cintuglu and D. Ishchenko, “Real-time asynchronous information processing in distributed power systems control,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 773–782, Jan. 2022. doi: 10.1109/TSG.2021.3113174
    [33]
    A. Cherukuri, E. Mallada, and J. Cortés, “Asymptotic convergence of constrained primal-dual dynamics,” Syst. Control Lett., vol. 87, pp. 10–15, Jan. 2016. doi: 10.1016/j.sysconle.2015.10.006
    [34]
    M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller: Stability and tracking,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp. 422–432, Mar. 2020. doi: 10.1109/TCNS.2019.2906916
    [35]
    Z. J. Wang, W. Wei, C. H. Zhao, Z. Y. Ma, Z. T. Zheng, Y. F. Zhang, and F. Liu, “Exponential stability of partial primal-dual gradient dynamics with nonsmooth objective functions,” Automatica, vol. 129, p. 109585, Jul. 2021. doi: 10.1016/j.automatica.2021.109585
    [36]
    X. L. Yi, S. J. Zhang, T. Yang, T. Y. Chai, and K. H. Johansson, “A primal-dual SGD algorithm for distributed nonconvex optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, May 2022. doi: 10.1109/JAS.2022.105554
    [37]
    X. Zhang, A. Papachristodoulou, and N. Li, “Distributed control for reaching optimal steady state in network systems: An optimization approach,” IEEE Trans. Autom. Control, vol. 63, no. 3, pp. 864–871, Mar. 2018. doi: 10.1109/TAC.2017.2737959
    [38]
    E. Mallada, C. H. Zhao, and S. Low, “Optimal load-side control for frequency regulation in smart grids,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6294–6309, Dec. 2017. doi: 10.1109/TAC.2017.2713529
    [39]
    A. Kasis, E. Devane, C. Spanias, and I. Lestas, “Primary frequency regulation with load-side participation–Part I: Stability and optimality,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3505–3518, Sept. 2017. doi: 10.1109/TPWRS.2016.2636286
    [40]
    A. Kasis, N. Monshizadeh, and I. Lestas, “Primary frequency regulation in power grids with on-off loads: Chattering, limit cycles and convergence to optimality,” Automatica, vol. 131, p. 109736, Sept. 2021. doi: 10.1016/j.automatica.2021.109736
    [41]
    S. Trip, M. Bürger, and C. De Persis, “An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages,” Automatica, vol. 64, pp. 240–253, Feb. 2016. doi: 10.1016/j.automatica.2015.11.021
    [42]
    L. J. Chen and S. You, “Reverse and forward engineering of frequency control in power networks,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4631–4638, Sept. 2017. doi: 10.1109/TAC.2016.2624984
    [43]
    Z. J. Wang, F. Liu, J. Z. F. Pang, S. H. Low, and S. W. Mei, “Distributed optimal frequency control considering a nonlinear network-preserving model,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 76–86, Jan. 2019. doi: 10.1109/TPWRS.2018.2861941
    [44]
    A. Kasis, N. Monshizadeh, E. Devane, and I. Lestas, “Stability and optimality of distributed secondary frequency control schemes in power networks,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1747–1761, Mar. 2019. doi: 10.1109/TSG.2017.2777146
    [45]
    Z. J. Wang, S. W. Mei, F. Liu, S. H. Low, and Yang, “Distributed load-side control: Coping with variation of renewable generations,” Automatica, vol. 109, p. 108556, Nov. 2019. doi: 10.1016/j.automatica.2019.108556
    [46]
    A. Kasis, N. Monshizadeh, and I. Lestas, “Secondary frequency control with on-off load side participation in power networks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 2, pp. 603–613, Jun. 2020. doi: 10.1109/TCNS.2019.2934386
    [47]
    Z. J. Wang, F. Liu, C. H. Zhao, Z. Y. Ma, and W. Wei, “Distributed optimal load frequency control considering nonsmooth cost functions,” Syst. Control Lett., vol. 136, p. 104607, Feb. 2020. doi: 10.1016/j.sysconle.2019.104607
    [48]
    C. De Persis and N. Monshizadeh, “A feedback control algorithm to steer networks to a cournot–Nash equilibrium,” IEEE Trans. Control Netw. Syst., vol. 6, no. 4, pp. 1486–1497, Dec. 2019. doi: 10.1109/TCNS.2019.2897907
    [49]
    J. Z. Pang, L. Guo, and S. H. Low, “Optimal load control for frequency regulation under limited control coverage,” in Proc. IREP Symp., 2017, pp. 1–7.
    [50]
    D. Chowdhury and H. K. Khalil, “Dynamic consensus and extended high gain observers as a tool to achieve practical frequency synchronization in power systems under unknown time-varying power demand,” Automatica, vol. 131, p. 109753, Sept. 2021. doi: 10.1016/j.automatica.2021.109753
    [51]
    A. Cherukuri, T. Stegink, C. De Persis, A. van der Schaft, and J. Cortés, “Frequency-driven market mechanisms for optimal dispatch in power networks,” Automatica, vol. 133, p. 109861, Nov. 2021. doi: 10.1016/j.automatica.2021.109861
    [52]
    Z. J. Wang, F. Liu, Y. Chen, S. H. Low, and S. W. Mei, “Unified distributed control of stand-alone DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1013–1024, Jan. 2019. doi: 10.1109/TSG.2017.2757498
    [53]
    Y. Liu, Y. K. Song, Z. J. Wang, and C. Shen, “Optimal emergency frequency control based on coordinated droop in multi-infeed hybrid AC-DC system,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3305–3316, Jul. 2021. doi: 10.1109/TPWRS.2021.3052251
    [54]
    M. Huneault and F. D. Galiana, “A survey of the optimal power flow literature,” IEEE Trans. Power Syst., vol. 6, no. 2, pp. 762–770, May 1991. doi: 10.1109/59.76723
    [55]
    J. Carpentier, “Contribution to the economic dispatch problem,” Bull. Soc. Francoise Elect., vol. 3, no. 8, pp. 431–447, Aug. 1962.
    [56]
    Dall’Anese and A. Simonetto, “Optimal power flow pursuit,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 942–952, Mar. 2018. doi: 10.1109/TSG.2016.2571982
    [57]
    L. Ortmann, A. Hauswirth, I. Caduff, F. Dörfler, and S. Bolognani, “Experimental validation of feedback optimization in power distribution grids,” Electr. Power Syst. Res., vol. 189, p. 106782, Dec. 2020. doi: 10.1016/j.jpgr.2020.106782
    [58]
    M. Picallo, L. Ortmann, S. Bolognani, and F. Dörfler, “Adaptive real-time grid operation via online feedback optimization with sensitivity estimation,” Electr. Power Syst. Res., vol. 212, p. 108405, Nov. 2022. doi: 10.1016/j.jpgr.2022.108405
    [59]
    Y. J. Zhang, E. Dall′′Anese, and M. Y. Hong, “Dynamic ADMM for real-time optimal power flow,” in Proc. IEEE Global Conf. Signal and Information Processing, Montreal, Canada, 2017, pp. 1085–1089.
    [60]
    Y. J. Tang and S. Low, “Distributed algorithm for time-varying optimal power flow,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 3264–3270.
    [61]
    Y. J. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2963–2973, Nov. 2017. doi: 10.1109/TSG.2017.2704922
    [62]
    M. Picallo, D. Liao-McPherson, S. Bolognani, and F. Dörfler, “Cross-layer design for real-time grid operation: Estimation, optimization and power flow,” Electr. Power Syst. Res., vol. 212, p. 108378, Nov. 2022. doi: 10.1016/j.jpgr.2022.108378
    [63]
    M. Picallo, S. Bolognani, and F. Dörfler, “Closing the loop: Dynamic state estimation and feedback optimization of power grids,” Electr. Power Syst. Res., vol. 189, p. 106753, Dec. 2020. doi: 10.1016/j.jpgr.2020.106753
    [64]
    H. Zhu and H. J. Liu, “Fast local voltage control under limited reactive power: Optimality and stability analysis,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3794–3803, Sept. 2016. doi: 10.1109/TPWRS.2015.2504419
    [65]
    H. J. Liu, W. Shi, and H. Zhu, “Decentralized dynamic optimization for power network voltage control,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 568–579, Sept. 2017.
    [66]
    X. Y. Zhou, M. Farivar, Z. Y. Liu, L. J. Chen, and S. H. Low, “Reverse and forward engineering of local voltage control in distribution networks,” IEEE Trans. Autom. Control, vol. 66, no. 3, Mar. 2021.
    [67]
    K. Turitsyn, Šulc, S. Backhaus, and M. Chertkov, “Options for control of reactive power by distributed photovoltaic generators,” Proc. IEEE, vol. 99, no. 6, pp. 1063–1073, Jun. 2011. doi: 10.1109/JPROC.2011.2116750
    [68]
    K. E. Antoniadou-Plytaria, I. N. Kouveliotis-Lysikatos, S. Georgilakis, and N. D. Hatziargyriou, “Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2999–3008, Nov. 2017. doi: 10.1109/TSG.2017.2679238
    [69]
    S. Bolognani and S. Zampieri, “A distributed control strategy for reactive power compensation in smart microgrids,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2818–2833, Nov. 2013. doi: 10.1109/TAC.2013.2270317
    [70]
    Šulc, S. Backhaus, and M. Chertkov, “Optimal distributed control of reactive power via the alternating direction method of multipliers,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 968–977, Dec. 2014. doi: 10.1109/TEC.2014.2363196
    [71]
    S. Bolognani, R. Carli, G. Cavraro, and S. Zampieri, “Distributed reactive power feedback control for voltage regulation and loss minimization,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 966–l981, Apr. 2015. doi: 10.1109/TAC.2014.2363931
    [72]
    B. S. Zhang, A. Y. S. Lam, A. D. Domínguez-García, and D. Tse, “An optimal and distributed method for voltage regulation in power distribution systems,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1714–1726, Jul. 2015. doi: 10.1109/TPWRS.2014.2347281
    [73]
    H. J. Liu, W. Shi, and H. Zhu, “Distributed voltage control in distribution networks: Online and robust implementations,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6106–6117, Nov. 2018. doi: 10.1109/TSG.2017.2703642
    [74]
    H. J. Liu, W. Shi, and H. Zhu, “Hybrid voltage control in distribution networks under limited communication rates,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2416–2427, May 2019. doi: 10.1109/TSG.2018.2797692
    [75]
    Z. Y. Tang, D. J. Hill, and T. Liu, “Fast distributed reactive power control for voltage regulation in distribution networks,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 802–805, Jan. 2019. doi: 10.1109/TPWRD.2018.2868158
    [76]
    Z. J. Wang, F. Liu, Y. F. Su, P. Yang, and B. Y. Qin, “Asynchronous distributed voltage control in active distribution networks,” Automatica, vol. 122, p. 109269, Dec. 2020. doi: 10.1016/j.automatica.2020.109269
    [77]
    M. J. Neely, Stochastic Network Optimization With Application to Communication and Queueing Systems. Cham, Germany: Springer, 2010, pp. 1–211.
    [78]
    T. Y. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis, “Stochastic averaging for constrained optimization with application to online resource allocation,” IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3078–3093, Jun. 2017. doi: 10.1109/TSP.2017.2679690
    [79]
    T. Y. Chen, Q. Ling, and G. B. Giannakis, “Learn-and-adapt stochastic dual gradients for network resource allocation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 4, pp. 1941–1951, Dec. 2018. doi: 10.1109/TCNS.2017.2774043
    [80]
    E. Stai, C. Wang, and J. Y. Le Boudec, “Online battery storage management via Lyapunov optimization in active distribution grids,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 672–690, Mar. 2021. doi: 10.1109/TCST.2020.2975475
    [81]
    S. Salinas, M. Li, P. Li, and Y. Fu, “Dynamic energy management for the smart grid with distributed energy resources,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2139–2151, Dec. 2013. doi: 10.1109/TSG.2013.2265556
    [82]
    S. Fan, G. Y. He, X. Y. Zhou, and M. J. Cui, “Online optimization for networked distributed energy resources with time-coupling constraints,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 251–267, Jan. 2021. doi: 10.1109/TSG.2020.3010866
    [83]
    Y. S. Huang, S. W. Mao, and R. M. Nelms, “Adaptive electricity scheduling in microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 270–281, Jan. 2014. doi: 10.1109/TSG.2013.2282823
    [84]
    W. B. Shi, N. Li, C. C. Chu, and R. Gadh, “Real-time energy management in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 228–238, Jan. 2017. doi: 10.1109/TSG.2015.2462294
    [85]
    S. Paul and N. Padhy, “Real-time energy management for smart homes,” IEEE Syst. J., vol. 15, no. 3, Sept. 2021.
    [86]
    R. Hao, T. G. Lu, Q. Ai, Z. Wang, and X. L. Wang, “Distributed online learning and dynamic robust standby dispatch for networked microgrids,” Appl. Energy, vol. 274, p. 115256, Sept. 2020. doi: 10.1016/j.apenergy.2020.115256
    [87]
    S. Zeinal-Kheiri, A. M. Shotorbani, and B. Mohammadi-Ivatloo, “Real-time energy management of grid-connected microgrid with flexible and delay-tolerant loads,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 6, pp. 1196–1207, Nov. 2020. doi: 10.35833/MPCE.2018.000615
    [88]
    A. M. Shotorbani, S. Zeinal-Kheiri, G. Chhipi-Shrestha, B. Mohammadi-Ivatloo, R. Sadiq, and K. Hewage, “Enhanced real-time scheduling algorithm for energy management in a renewable-integrated microgrid,” Appl. Energy, vol. 304, p. 117658, Dec. 2021. doi: 10.1016/j.apenergy.2021.117658
    [89]
    K. Zhou, J. P. Pan, and L. Cai, “Optimal combined heat and power system scheduling in smart grid,” in Proc. IEEE Conf. Computer Communications, Toronto, Canada, 2014, pp. 2831–2839.
    [90]
    G. L. Zhang, Z. R. Shen, and L. Wang, “Online energy management for microgrids with CHP co-generation and energy storage,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 533–541, Mar. 2020. doi: 10.1109/TCST.2018.2873193
    [91]
    H. Li, W. X. Sheng, Q. Duan, Z. Li, C. H. Zhu, and X. Y. Zhang, “A Lyapunov optimization-based energy management strategy for energy hub with energy router,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 4860–4870, Nov. 2020. doi: 10.1109/TSG.2020.2968747
    [92]
    S. Zeinal-Kheiri, S. Ghassem-Zadeh, A. M. Shotorbani, and B. Mohammadi-Ivatloo, “Real-time energy management in a microgrid with renewable generation, energy storages, flexible loads and combined heat and power units using Lyapunov optimisation,” IET Renewable Power Gener., vol. 14, no. 4, pp. 526–538, Mar. 2020. doi: 10.1049/iet-rpg.2019.0297
    [93]
    G. F. Wang, X. D. Yang, W. H. Cai, and Y. B. Zhang, “Event-triggered online energy flow control strategy for regional integrated energy system using Lyapunov optimization,” Int. J. Electr. Power Energy Syst., vol. 125, p. 106451, Feb. 2021. doi: 10.1016/j.ijepes.2020.106451
    [94]
    J. Yan, M. Menghwar, E. Asghar, M. K. Panjwani, and Y. Q. Liu, “Real-time energy management for a smart-community microgrid with battery swapping and renewables,” Appl. Energy, vol. 238, pp. 180–194, Mar. 2019. doi: 10.1016/j.apenergy.2018.12.078
    [95]
    A. Ahmad and J. Y. Khan, “Real-time load scheduling and storage management for solar powered network connected EVs,” IEEE Trans. Sustain. Energy, vol. 11, no. 3, pp. 1220–1235, Jul. 2020. doi: 10.1109/TSTE.2019.2921024
    [96]
    T. Liu, Y. M. Zhu, H. Z. Zhu, J. D. Yu, Y. Y. Yang, and F. Ye, “Online pricing for efficient renewable energy sharing in a sustainable microgrid,” Comput. J., vol. 60, no. 2, pp. 268–284, Feb. 2017.
    [97]
    N. Liu, X. H. Yu, W. Fan, C. G. Hu, T. Rui, Q. F. Chen, and J. H. Zhang, “Online energy sharing for nanogrid clusters: A Lyapunov optimization approach,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4624–4636, Sept. 2018. doi: 10.1109/TSG.2017.2665634
    [98]
    D. F. Zhu, B. Yang, Q. Liu, K. Ma, S. Y. Zhu, C. B. Ma, and X. Guan, “Energy trading in microgrids for synergies among electricity, hydrogen and heat networks,” Appl. Energy, vol. 272, p. 115225, Aug. 2020. doi: 10.1016/j.apenergy.2020.115225
    [99]
    L. Zheng and L. Cai, “A distributed demand response control strategy using Lyapunov optimization,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2075–2083, Jul. 2014. doi: 10.1109/TSG.2014.2313347
    [100]
    S. Sun, M. Dong, and B. Liang, “Distributed real-time power balancing in renewable-integrated power grids with storage and flexible loads,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2337–2349, Sept. 2016. doi: 10.1109/TSG.2015.2445794
    [101]
    W. F. Zhong, K. Xie, Y. Liu, C. Yang, S. L. Xie, and Y. Zhang, “Online control and near-optimal algorithm for distributed energy storage sharing in smart grid,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2552–2562, May 2020. doi: 10.1109/TSG.2019.2957426
    [102]
    S. Fan, J. Liu, Q. Wu, M. J. Cui, H. Zhou, and G. Y. He, “Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm,” Appl. Energy, vol. 277, p. 115583, Nov. 2020. doi: 10.1016/j.apenergy.2020.115583
    [103]
    H. L. Zhu and K. Ouahada, “A distributed real-time control algorithm for energy storage sharing,” Energy Build., vol. 230, p. 110478, Jan. 2021. doi: 10.1016/j.enbuild.2020.110478
    [104]
    T. Y. Li and M. Dong, “Real-time energy storage management with renewable integration: Finite-time horizon approach,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2524–2539, Dec. 2015. doi: 10.1109/JSAC.2015.2481212
    [105]
    T. Y. Li and M. Dong, “Real-time residential-side joint energy storage management and load scheduling with renewable integration,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 283–298, Jan. 2018. doi: 10.1109/TSG.2016.2550500
    [106]
    T. Y. Li and M. Dong, “Residential energy storage management with bidirectional energy control,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3596–3611, Jul. 2019. doi: 10.1109/TSG.2018.2832621
    [107]
    M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,” in Proc. 20th Int. Conf. Machine Learning, Washington, USA, 2003, pp. 928–936.
    [108]
    Y. F. Mo, Q. L. Lin, M. H. Chen, and S. Z. J. Qin, “Optimal online algorithms for peak-demand reduction maximization with energy storage,” in Proc. 12th ACM Int. Conf. Future Energy Systems, Torino, Italy, 2021, pp. 73–83.
    [109]
    A. Menati, S. C. K. Chau, and M. H. Chen, “Competitive prediction-aware online algorithms for energy generation scheduling in microgrids,” in Proc. 13th ACM Int. Conf. Future Energy Systems, 2022, pp. 383–394.
    [110]
    T. Y. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization approach to proactive network resource allocation,” IEEE Trans. Signal Process., vol. 65, no. 24, pp. 6350–6364, Dec. 2017. doi: 10.1109/TSP.2017.2750109
    [111]
    X. Y. Cao and K. J. R. Liu, “Online convex optimization with time-varying constraints and bandit feedback,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2665–2680, Jul. 2019. doi: 10.1109/TAC.2018.2884653
    [112]
    X. L. Yi, X. X. Li, L. H. Xie, and K. H. Johansson, “Distributed online convex optimization with time-varying coupled inequality constraints,” IEEE Trans. Signal Process., vol. 68, pp. 731–746, Jan. 2020. doi: 10.1109/TSP.2020.2964200
    [113]
    A. Lesage-Landry and D. S. Callaway, “Dynamic and distributed online convex optimization for demand response of commercial buildings,” IEEE Control Syst. Lett., vol. 4, no. 3, pp. 632–637, Jul. 2020. doi: 10.1109/LCSYS.2020.2989110
    [114]
    D. M. Yuan, A. Proutiere, and G. D. Shi, “Distributed online optimization with long-term constraints,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1089–1104, Mar. 2022. doi: 10.1109/TAC.2021.3057601
    [115]
    A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the bandit setting: Gradient descent without a gradient,” in Proc. 16th Annu. ACM-SIAM Symp. Discrete Algorithms, Vancouver, Canada, 2005, pp. 385–394.
    [116]
    X. L. Yi, X. X. Li, T. Yang, L. H. Xie, T. Y. Chai, and K. H. Johansson, “Distributed bandit online convex optimization with time-varying coupled inequality constraints,” IEEE Trans. Automa. Control, vol. 66, no. 10, pp. 4620–4635, Oct. 2021. doi: 10.1109/TAC.2020.3030883
    [117]
    E. Hazan, “Introduction to online convex optimization,” Found. Trends Optim., vol. 2, no. 3–4, pp. 157–325, Aug. 2016.
    [118]
    S. Shalev-Shwartz, “Online learning and online convex optimization,” Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011. doi: 10.1561/2200000018
    [119]
    M. Badiei, N. Li, and A. Wierman, “Online convex optimization with ramp constraints,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 6730–6736.
    [120]
    W. J. Ma, V. Gupta, and U. Topcu, “Distributed charging control of electric vehicles using online learning,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5289–5295, Oct. 2017. doi: 10.1109/TAC.2016.2636740
    [121]
    S. J. Kim and G. B. Giannakis, “An online convex optimization approach to real-time energy pricing for demand response,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2784–2793, Nov. 2017. doi: 10.1109/TSG.2016.2539948
    [122]
    S. Bahrami, V. W. S. Wong, and J. W. Huang, “An online learning algorithm for demand response in smart grid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4712–4725, Sept. 2018. doi: 10.1109/TSG.2017.2667599
    [123]
    S. Bahrami, Y. C. Chen, and V. W. S. Wong, “An online algorithm for data center demand response,” in Proc. 53rd Annu. Conf. Information Sciences and Systems, Baltimore, USA, 2019, pp. 1–6.
    [124]
    A. Lesage-Landry, H. Wang, I. Shames, Mancarella, and J. A. Taylor, “Online convex optimization of multi-energy building-to-grid ancillary services,” IEEE Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2416–2431, Nov. 2020. doi: 10.1109/TCST.2019.2944328
    [125]
    X. Chen, Y. T. Nie, and N. Li, “Online residential demand response via contextual multi-armed bandits,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 433–438, Apr. 2021. doi: 10.1109/LCSYS.2020.3003190
    [126]
    T. Q. Zhao, A. Parisio, and J. V. Milanović, “Distributed control of battery energy storage systems for improved frequency regulation,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3729–3738, Sept. 2020. doi: 10.1109/TPWRS.2020.2974026
    [127]
    Ya ng, F. Liu, Z. J. Wang, and C. Shen, “Distributed stability conditions for power systems with heterogeneous nonlinear bus dynamics,” IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2313–2324, May 2020. doi: 10.1109/TPWRS.2019.2951202
    [128]
    T. Yang, X. L. Yi, J. F. Wu, Y. Yuan, D. Wu, Z. Y. Meng, Y. G. Hong, H. Wang, Z. L. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annu. Rev. Control, vol. 47, pp. 278–305, May 2019. doi: 10.1016/j.arcontrol.2019.05.006
    [129]
    D. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1439–1451, Aug. 2006. doi: 10.1109/JSAC.2006.879350
    [130]
    S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
    [131]
    V. Smith, S. Forte, C. X. Ma, M. Takáč, M. I. Jordan, and M. Jaggi, “CoCoA: A general framework for communication-efficient distributed optimization,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 8590–8638, Jan. 2017.
    [132]
    Y. F. Zhang, Y. F. Su, and F. Liu, “Protocol for constrained multi-agent optimization with arbitrary local solvers,” in Proc. 11th Int. Conf. Information Science and Technology, Chengdu, China, 2021, pp. 148–157.
    [133]
    L. Q. Guo and S. H. Low, “Spectral characterization of controllability and observability for frequency regulation dynamics,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 6313–6320.
    [134]
    A. Ademola-Idowu and B. S. Zhang, “Frequency stability using MPC-based inverter power control in low-inertia power systems,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1628–1637, Mar. 2021. doi: 10.1109/TPWRS.2020.3019998
    [135]
    T. Yang, L. Y. Zhao, W. Li, and A. Y. Zomaya, “Reinforcement learning in sustainable energy and electric systems: A survey,” Annu. Rev. Control, vol. 49, pp. 145–163, Apr. 2020. doi: 10.1016/j.arcontrol.2020.03.001
    [136]
    X. Chen, G. N. Qu, Y. J. Tang, S. Low, and N. Li, “Reinforcement learning for selective key applications in power systems: Recent advances and future challenges,” IEEE Trans. Smart Grid, vol. 13, no. 4, Jul. 2022.
    [137]
    Z. Wang, C. L. Chen, and D. Y. Dong, “Instance weighted incremental evolution strategies for reinforcement learning in dynamic environments,” IEEE Trans. Neural Netw. Learn. Syst., 2022, DOI: 10.1109/TNNLS.2022.3160173.
    [138]
    G. N. Qu, C. K. Yu, S. Low, and A. Wierman, “Combining model-based and model-free methods for nonlinear control: A provably convergent policy gradient approach,” arXiv preprint arXiv: 2006.07476, 2020.
    [139]
    Q. Wang, F. Li, Y. Tang, and Y. Xu, “Integrating model-driven and data-driven methods for power system frequency stability assessment and control,” IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4557–4568, Nov. 2019. doi: 10.1109/TPWRS.2019.2919522
    [140]
    Y. Y. Li, G. N. Qu, and N. Li, “Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4761–4768, Oct. 2021. doi: 10.1109/TAC.2020.3040249
    [141]
    T. Morstyn, N. Farrell, S. J. Darby, and M. D. McCulloch, “Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants,” Nat. Energy, vol. 3, no. 2, pp. 94–101, Feb. 2018. doi: 10.1038/s41560-017-0075-y
    [142]
    Z. J. Wang, F. Liu, Z. Y. Ma, Y. Chen, M. S. Jia, W. Wei, and Q. W. Wu, “Distributed generalized Nash equilibrium seeking for energy sharing games in prosumers,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3973–3986, Sept. 2021. doi: 10.1109/TPWRS.2021.3058675
    [143]
    J. R. Wang, Y. T. Hong, J. L. Wang, J. Xu, Y. Tang, Q. L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, May 2022.
    [144]
    Y. W. Zhang, S. Liang, X. H. Wang, and H. B. Ji, “Distributed Nash equilibrium seeking for aggregative games with nonlinear dynamics under external disturbances,” IEEE Trans. Cybern., vol. 50, no. 12, pp. 4876–4885, Dec. 2020. doi: 10.1109/TCYB.2019.2929394
    [145]
    Y. N. Zhu, W. W. Yu, W. Ren, G. H. Wen, and J. Gu, “Generalized Nash equilibrium seeking via continuous-time coordination dynamics over digraphs,” IEEE Trans. Control Netw. Syst., vol. 8, no. 2, pp. 1023–1033, Jun. 2021. doi: 10.1109/TCNS.2021.3056034
    [146]
    Z. H. Deng, “Distributed Nash equilibrium seeking for aggregative games with second-order nonlinear players,” Automatica, vol. 135, p. 109980, Jan. 2022. doi: 10.1016/j.automatica.2021.109980
    [147]
    Yi and L. Pavel, “An operator splitting approach for distributed generalized Nash equilibria computation,” Automatica, vol. 102, pp. 111–121, Apr. 2019. doi: 10.1016/j.automatica.2019.01.008
    [148]
    A. Agarwal, J. W. Simpson-Porco, and L. Pavel, “Game-theoretic feedback-based optimization,” IFAC-PapersOnLine, vol. 55, no. 13, pp. 174–179, Jan. 2022. doi: 10.1016/j.ifacol.2022.07.255
    [149]
    M. Meng, X. X. Li, Y. G. Hong, J. Chen, and L. Wang, “Decentralized online learning for noncooperative games in dynamic environments,” arXiv preprint arXiv: 2105.06200, 2021.
    [150]
    K. H. Lu, G. Q. Li, and L. Wang, “Online distributed algorithms for seeking generalized Nash equilibria in dynamic environments,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2289–2296, May 2021. doi: 10.1109/TAC.2020.3002592

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (575) PDF downloads(101) Cited by()

    Highlights

    • The motivations for the use of online optimization within the power system are explained explicitly
    • Online optimization problems are classified into three main classes, largely defined by their time scales, namely, dynamic control, single-period optimization, and multi-period optimization. This will eliminate the long-existing confusion in this field and lower the barrier of entry for researchers to work on online optimization in power systems
    • A comprehensive review and a comparative analysis of four types of online optimization methods are performed, i.e., optimization-guided dynamic control, feedback optimization, Lyapunov optimization, and online convex optimization, covering their motivation, time scale, theoretical foundations, and typical applications
    • Critical challenges and promising directions are discussed for online decision-making in power systems in depth

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return