IEEE/CAA Journal of Automatica Sinica
Citation: | Z. J. Wang, W. Wei, J. Z. F. Pang, F. Liu, B. Yang, X. P. Guan, and S. W. Mei, “Online optimization in power systems with high penetration of renewable generation: Advances and prospects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 839–858, Apr. 2023. doi: 10.1109/JAS.2023.123126 |
[1] |
IRENA. Renewable energy statistics 2022. [Online]. Available: https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022. Accessed on: Jul. 2022.
|
[2] |
Z. J. Guo, W. Wei, L. J. Chen, Y. Chen, and S. W. Mei, “Real-time self-dispatch of a remote wind-storage integrated power plant without predictions: Explicit policy and performance guarantee,” IEEE Open Access J. Power Energy, vol. 8, pp. 484–496, Jun. 2021. doi: 10.1109/OAJPE.2021.3089583
|
[3] |
D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2941–2962, Nov. 2017. doi: 10.1109/TSG.2017.2720471
|
[4] |
Z. Q. Zhang, C. X. Dou, D. Yue, and B. Zhang, “Predictive voltage hierarchical controller design for islanded microgrids under limited communication,” IEEE Trans. Circuits Syst. I: Regular Pap., vol. 69, no. 2, pp. 933–945, Feb. 2022. doi: 10.1109/TCSI.2021.3117048
|
[5] |
Z. Q. Zhang, C. X. Dou, D. Yue, Y. D. Zhang, B. Zhang, and Z. J. Zhang, “Event-triggered hybrid voltage regulation with required BESS sizing in high-PV-penetration networks,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2614–2626, Jul. 2022. doi: 10.1109/TSG.2022.3168440
|
[6] |
F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed control and economic optimality in microgrids,” IEEE Trans. Control Netw. Syst., vol. 3, no. 3, pp. 241–253, Sept. 2016. doi: 10.1109/TCNS.2015.2459391
|
[7] |
C. MacIver, K. Bell, and M. Nedd, “An analysis of the August 9th 2019 GB transmission system frequency incident,” Electr. Power Syst. Res., vol. 199, p. 107444, Oct. 2021. doi: 10.1016/j.jpgr.2021.107444
|
[8] |
A. Jokic, “Price-based optimal control of electrical power systems,” Ph.D. dissertation, Eindhoven Univ. Technology, Eindhoven, the Netherlands, 2007.
|
[9] |
A. Jokic, M. Lazar, and P. J. van den Bosch, “On constrained steady-state regulation: Dynamic KKT controllers,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2250–2254, Sept. 2009. doi: 10.1109/TAC.2009.2026856
|
[10] |
C. H. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-side primary frequency control in power systems,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1177–1189, May 2014. doi: 10.1109/TAC.2014.2298140
|
[11] |
N. Li, C. H. Zhao, and L. J. Chen, “Connecting automatic generation control and economic dispatch from an optimization view,” IEEE Trans. Control Netw. Syst., vol. 3, no. 3, pp. 254–264, Sept. 2016. doi: 10.1109/TCNS.2015.2459451
|
[12] |
F. Zohrizadeh, C. Josz, M. Jin, R. Madani, J. Lavaei, and S. Sojoudi, “A survey on conic relaxations of optimal power flow problem,” Eur. J. Oper. Res., vol. 287, no. 2, pp. 391–409, Dec. 2020. doi: 10.1016/j.ejor.2020.01.034
|
[13] |
L. W. Gan and S. H. Low, “An online gradient algorithm for optimal power flow on radial networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 625–638, Mar. 2016. doi: 10.1109/JSAC.2016.2525598
|
[14] |
M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial distribution systems,” IEEE Trans. Power Delivery, vol. 4, no. 1, pp. 725–734, Jan. 1989. doi: 10.1109/61.19265
|
[15] |
T. Stegink, C. De Persis, and A. van der Schaft, “A unifying energy-based approach to stability of power grids with market dynamics,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2612–2622, Jun. 2017. doi: 10.1109/TAC.2016.2613901
|
[16] |
J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability of droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp. 2457–2469, Oct. 2014. doi: 10.1016/j.automatica.2014.08.009
|
[17] |
C. De Persis and N. Monshizadeh, “Bregman storage functions for microgrid control,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 53–68, Jan. 2018. doi: 10.1109/TAC.2017.2709246
|
[18] |
Z. J. Wang, F. Liu, S. H. Low, C. H. Zhao, and S. W. Mei, “Distributed frequency control with operational constraints, part I: Per-node power balance,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 40–52, Jan. 2019. doi: 10.1109/TSG.2017.2731810
|
[19] |
Jokić, M. Lazar, and P. J. van den Bosch, “Real-time control of power systems using nodal prices,” Int. J. Electr. Power Energy Syst., vol. 31, no. 9, pp. 522–530, Oct. 2009. doi: 10.1016/j.ijepes.2009.03.034
|
[20] |
R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007. doi: 10.1109/JPROC.2006.887293
|
[21] |
H. H. Xin, Z. H. Lu, Y. Liu, and D. Q. Gan, “A center-free control strategy for the coordination of multiple photovoltaic generators,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1262–1269, May 2014. doi: 10.1109/TSG.2014.2302310
|
[22] |
F. H. Guo, C. Y. Wen, J. F. Mao, and Y. D. Song, “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4355–4364, Jul. 2015. doi: 10.1109/TIE.2014.2379211
|
[23] |
J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo, “Secondary frequency and voltage control of islanded microgrids via distributed averaging,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7025–7038, Nov. 2015. doi: 10.1109/TIE.2015.2436879
|
[24] |
X. Y. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2764–2776, Jul. 2018. doi: 10.1109/TSG.2016.2619486
|
[25] |
C. H. Zhao, E. Mallada, and F. Dörfler, “Distributed frequency control for stability and economic dispatch in power networks,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 2359–2364.
|
[26] |
S. T. Cady, A. D. Domínguez-García, and C. N. Hadjicostis, “A distributed generation control architecture for islanded AC micro-grids,” IEEE Trans. Control Syst. Technol., vol. 23, no. 5, pp. 1717–1735, Sept. 2015. doi: 10.1109/TCST.2014.2381601
|
[27] |
F. Dörfler and S. Grammatico, “Gather-and-broadcast frequency control in power systems,” Automatica, vol. 79, pp. 296–305, May 2017. doi: 10.1016/j.automatica.2017.02.003
|
[28] |
E. Weitenberg, Y. Jiang, C. H. Zhao, E. Mallada, C. De Persis, and F. Dörfler, “Robust decentralized secondary frequency control in power systems: Merits and tradeoffs,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 3967–3982, Oct. 2019. doi: 10.1109/TAC.2018.2884650
|
[29] |
J. D. Watson and I. Lestas, “Frequency and voltage regulation in hybrid AC/DC networks,” IEEE Trans. Control Syst. Technol., vol. 29, no. 5, pp. 1839–1849, Sept. 2021. doi: 10.1109/TCST.2020.3022331
|
[30] |
Z. J. Wang, L. J. Chen, F. Liu, Y i, M. Cao, S. C. Deng, and S. W. Mei, “Asynchronous distributed power control of multimicrogrid systems,” IEEE Trans. Control Netw. Syst., vol. 7, no. 4, pp. 1960–1973, Dec. 2020. doi: 10.1109/TCNS.2020.3018703
|
[31] |
J. G. Lai, X. Q. Lu, X. H. Yu, and A. Monti, “Stochastic distributed secondary control for AC microgrids via event-triggered communication,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 2746–2759, Jul. 2020. doi: 10.1109/TSG.2020.2966691
|
[32] |
M. H. Cintuglu and D. Ishchenko, “Real-time asynchronous information processing in distributed power systems control,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 773–782, Jan. 2022. doi: 10.1109/TSG.2021.3113174
|
[33] |
A. Cherukuri, E. Mallada, and J. Cortés, “Asymptotic convergence of constrained primal-dual dynamics,” Syst. Control Lett., vol. 87, pp. 10–15, Jan. 2016. doi: 10.1016/j.sysconle.2015.10.006
|
[34] |
M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller: Stability and tracking,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp. 422–432, Mar. 2020. doi: 10.1109/TCNS.2019.2906916
|
[35] |
Z. J. Wang, W. Wei, C. H. Zhao, Z. Y. Ma, Z. T. Zheng, Y. F. Zhang, and F. Liu, “Exponential stability of partial primal-dual gradient dynamics with nonsmooth objective functions,” Automatica, vol. 129, p. 109585, Jul. 2021. doi: 10.1016/j.automatica.2021.109585
|
[36] |
X. L. Yi, S. J. Zhang, T. Yang, T. Y. Chai, and K. H. Johansson, “A primal-dual SGD algorithm for distributed nonconvex optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, May 2022. doi: 10.1109/JAS.2022.105554
|
[37] |
X. Zhang, A. Papachristodoulou, and N. Li, “Distributed control for reaching optimal steady state in network systems: An optimization approach,” IEEE Trans. Autom. Control, vol. 63, no. 3, pp. 864–871, Mar. 2018. doi: 10.1109/TAC.2017.2737959
|
[38] |
E. Mallada, C. H. Zhao, and S. Low, “Optimal load-side control for frequency regulation in smart grids,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6294–6309, Dec. 2017. doi: 10.1109/TAC.2017.2713529
|
[39] |
A. Kasis, E. Devane, C. Spanias, and I. Lestas, “Primary frequency regulation with load-side participation–Part I: Stability and optimality,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3505–3518, Sept. 2017. doi: 10.1109/TPWRS.2016.2636286
|
[40] |
A. Kasis, N. Monshizadeh, and I. Lestas, “Primary frequency regulation in power grids with on-off loads: Chattering, limit cycles and convergence to optimality,” Automatica, vol. 131, p. 109736, Sept. 2021. doi: 10.1016/j.automatica.2021.109736
|
[41] |
S. Trip, M. Bürger, and C. De Persis, “An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages,” Automatica, vol. 64, pp. 240–253, Feb. 2016. doi: 10.1016/j.automatica.2015.11.021
|
[42] |
L. J. Chen and S. You, “Reverse and forward engineering of frequency control in power networks,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4631–4638, Sept. 2017. doi: 10.1109/TAC.2016.2624984
|
[43] |
Z. J. Wang, F. Liu, J. Z. F. Pang, S. H. Low, and S. W. Mei, “Distributed optimal frequency control considering a nonlinear network-preserving model,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 76–86, Jan. 2019. doi: 10.1109/TPWRS.2018.2861941
|
[44] |
A. Kasis, N. Monshizadeh, E. Devane, and I. Lestas, “Stability and optimality of distributed secondary frequency control schemes in power networks,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1747–1761, Mar. 2019. doi: 10.1109/TSG.2017.2777146
|
[45] |
Z. J. Wang, S. W. Mei, F. Liu, S. H. Low, and Yang, “Distributed load-side control: Coping with variation of renewable generations,” Automatica, vol. 109, p. 108556, Nov. 2019. doi: 10.1016/j.automatica.2019.108556
|
[46] |
A. Kasis, N. Monshizadeh, and I. Lestas, “Secondary frequency control with on-off load side participation in power networks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 2, pp. 603–613, Jun. 2020. doi: 10.1109/TCNS.2019.2934386
|
[47] |
Z. J. Wang, F. Liu, C. H. Zhao, Z. Y. Ma, and W. Wei, “Distributed optimal load frequency control considering nonsmooth cost functions,” Syst. Control Lett., vol. 136, p. 104607, Feb. 2020. doi: 10.1016/j.sysconle.2019.104607
|
[48] |
C. De Persis and N. Monshizadeh, “A feedback control algorithm to steer networks to a cournot–Nash equilibrium,” IEEE Trans. Control Netw. Syst., vol. 6, no. 4, pp. 1486–1497, Dec. 2019. doi: 10.1109/TCNS.2019.2897907
|
[49] |
J. Z. Pang, L. Guo, and S. H. Low, “Optimal load control for frequency regulation under limited control coverage,” in Proc. IREP Symp., 2017, pp. 1–7.
|
[50] |
D. Chowdhury and H. K. Khalil, “Dynamic consensus and extended high gain observers as a tool to achieve practical frequency synchronization in power systems under unknown time-varying power demand,” Automatica, vol. 131, p. 109753, Sept. 2021. doi: 10.1016/j.automatica.2021.109753
|
[51] |
A. Cherukuri, T. Stegink, C. De Persis, A. van der Schaft, and J. Cortés, “Frequency-driven market mechanisms for optimal dispatch in power networks,” Automatica, vol. 133, p. 109861, Nov. 2021. doi: 10.1016/j.automatica.2021.109861
|
[52] |
Z. J. Wang, F. Liu, Y. Chen, S. H. Low, and S. W. Mei, “Unified distributed control of stand-alone DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1013–1024, Jan. 2019. doi: 10.1109/TSG.2017.2757498
|
[53] |
Y. Liu, Y. K. Song, Z. J. Wang, and C. Shen, “Optimal emergency frequency control based on coordinated droop in multi-infeed hybrid AC-DC system,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3305–3316, Jul. 2021. doi: 10.1109/TPWRS.2021.3052251
|
[54] |
M. Huneault and F. D. Galiana, “A survey of the optimal power flow literature,” IEEE Trans. Power Syst., vol. 6, no. 2, pp. 762–770, May 1991. doi: 10.1109/59.76723
|
[55] |
J. Carpentier, “Contribution to the economic dispatch problem,” Bull. Soc. Francoise Elect., vol. 3, no. 8, pp. 431–447, Aug. 1962.
|
[56] |
Dall’Anese and A. Simonetto, “Optimal power flow pursuit,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 942–952, Mar. 2018. doi: 10.1109/TSG.2016.2571982
|
[57] |
L. Ortmann, A. Hauswirth, I. Caduff, F. Dörfler, and S. Bolognani, “Experimental validation of feedback optimization in power distribution grids,” Electr. Power Syst. Res., vol. 189, p. 106782, Dec. 2020. doi: 10.1016/j.jpgr.2020.106782
|
[58] |
M. Picallo, L. Ortmann, S. Bolognani, and F. Dörfler, “Adaptive real-time grid operation via online feedback optimization with sensitivity estimation,” Electr. Power Syst. Res., vol. 212, p. 108405, Nov. 2022. doi: 10.1016/j.jpgr.2022.108405
|
[59] |
Y. J. Zhang, E. Dall′′Anese, and M. Y. Hong, “Dynamic ADMM for real-time optimal power flow,” in Proc. IEEE Global Conf. Signal and Information Processing, Montreal, Canada, 2017, pp. 1085–1089.
|
[60] |
Y. J. Tang and S. Low, “Distributed algorithm for time-varying optimal power flow,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 3264–3270.
|
[61] |
Y. J. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2963–2973, Nov. 2017. doi: 10.1109/TSG.2017.2704922
|
[62] |
M. Picallo, D. Liao-McPherson, S. Bolognani, and F. Dörfler, “Cross-layer design for real-time grid operation: Estimation, optimization and power flow,” Electr. Power Syst. Res., vol. 212, p. 108378, Nov. 2022. doi: 10.1016/j.jpgr.2022.108378
|
[63] |
M. Picallo, S. Bolognani, and F. Dörfler, “Closing the loop: Dynamic state estimation and feedback optimization of power grids,” Electr. Power Syst. Res., vol. 189, p. 106753, Dec. 2020. doi: 10.1016/j.jpgr.2020.106753
|
[64] |
H. Zhu and H. J. Liu, “Fast local voltage control under limited reactive power: Optimality and stability analysis,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3794–3803, Sept. 2016. doi: 10.1109/TPWRS.2015.2504419
|
[65] |
H. J. Liu, W. Shi, and H. Zhu, “Decentralized dynamic optimization for power network voltage control,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 568–579, Sept. 2017.
|
[66] |
X. Y. Zhou, M. Farivar, Z. Y. Liu, L. J. Chen, and S. H. Low, “Reverse and forward engineering of local voltage control in distribution networks,” IEEE Trans. Autom. Control, vol. 66, no. 3, Mar. 2021.
|
[67] |
K. Turitsyn, Šulc, S. Backhaus, and M. Chertkov, “Options for control of reactive power by distributed photovoltaic generators,” Proc. IEEE, vol. 99, no. 6, pp. 1063–1073, Jun. 2011. doi: 10.1109/JPROC.2011.2116750
|
[68] |
K. E. Antoniadou-Plytaria, I. N. Kouveliotis-Lysikatos, S. Georgilakis, and N. D. Hatziargyriou, “Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2999–3008, Nov. 2017. doi: 10.1109/TSG.2017.2679238
|
[69] |
S. Bolognani and S. Zampieri, “A distributed control strategy for reactive power compensation in smart microgrids,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2818–2833, Nov. 2013. doi: 10.1109/TAC.2013.2270317
|
[70] |
Šulc, S. Backhaus, and M. Chertkov, “Optimal distributed control of reactive power via the alternating direction method of multipliers,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 968–977, Dec. 2014. doi: 10.1109/TEC.2014.2363196
|
[71] |
S. Bolognani, R. Carli, G. Cavraro, and S. Zampieri, “Distributed reactive power feedback control for voltage regulation and loss minimization,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 966–l981, Apr. 2015. doi: 10.1109/TAC.2014.2363931
|
[72] |
B. S. Zhang, A. Y. S. Lam, A. D. Domínguez-García, and D. Tse, “An optimal and distributed method for voltage regulation in power distribution systems,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1714–1726, Jul. 2015. doi: 10.1109/TPWRS.2014.2347281
|
[73] |
H. J. Liu, W. Shi, and H. Zhu, “Distributed voltage control in distribution networks: Online and robust implementations,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6106–6117, Nov. 2018. doi: 10.1109/TSG.2017.2703642
|
[74] |
H. J. Liu, W. Shi, and H. Zhu, “Hybrid voltage control in distribution networks under limited communication rates,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2416–2427, May 2019. doi: 10.1109/TSG.2018.2797692
|
[75] |
Z. Y. Tang, D. J. Hill, and T. Liu, “Fast distributed reactive power control for voltage regulation in distribution networks,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 802–805, Jan. 2019. doi: 10.1109/TPWRD.2018.2868158
|
[76] |
Z. J. Wang, F. Liu, Y. F. Su, P. Yang, and B. Y. Qin, “Asynchronous distributed voltage control in active distribution networks,” Automatica, vol. 122, p. 109269, Dec. 2020. doi: 10.1016/j.automatica.2020.109269
|
[77] |
M. J. Neely, Stochastic Network Optimization With Application to Communication and Queueing Systems. Cham, Germany: Springer, 2010, pp. 1–211.
|
[78] |
T. Y. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis, “Stochastic averaging for constrained optimization with application to online resource allocation,” IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3078–3093, Jun. 2017. doi: 10.1109/TSP.2017.2679690
|
[79] |
T. Y. Chen, Q. Ling, and G. B. Giannakis, “Learn-and-adapt stochastic dual gradients for network resource allocation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 4, pp. 1941–1951, Dec. 2018. doi: 10.1109/TCNS.2017.2774043
|
[80] |
E. Stai, C. Wang, and J. Y. Le Boudec, “Online battery storage management via Lyapunov optimization in active distribution grids,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 672–690, Mar. 2021. doi: 10.1109/TCST.2020.2975475
|
[81] |
S. Salinas, M. Li, P. Li, and Y. Fu, “Dynamic energy management for the smart grid with distributed energy resources,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2139–2151, Dec. 2013. doi: 10.1109/TSG.2013.2265556
|
[82] |
S. Fan, G. Y. He, X. Y. Zhou, and M. J. Cui, “Online optimization for networked distributed energy resources with time-coupling constraints,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 251–267, Jan. 2021. doi: 10.1109/TSG.2020.3010866
|
[83] |
Y. S. Huang, S. W. Mao, and R. M. Nelms, “Adaptive electricity scheduling in microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 270–281, Jan. 2014. doi: 10.1109/TSG.2013.2282823
|
[84] |
W. B. Shi, N. Li, C. C. Chu, and R. Gadh, “Real-time energy management in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 228–238, Jan. 2017. doi: 10.1109/TSG.2015.2462294
|
[85] |
S. Paul and N. Padhy, “Real-time energy management for smart homes,” IEEE Syst. J., vol. 15, no. 3, Sept. 2021.
|
[86] |
R. Hao, T. G. Lu, Q. Ai, Z. Wang, and X. L. Wang, “Distributed online learning and dynamic robust standby dispatch for networked microgrids,” Appl. Energy, vol. 274, p. 115256, Sept. 2020. doi: 10.1016/j.apenergy.2020.115256
|
[87] |
S. Zeinal-Kheiri, A. M. Shotorbani, and B. Mohammadi-Ivatloo, “Real-time energy management of grid-connected microgrid with flexible and delay-tolerant loads,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 6, pp. 1196–1207, Nov. 2020. doi: 10.35833/MPCE.2018.000615
|
[88] |
A. M. Shotorbani, S. Zeinal-Kheiri, G. Chhipi-Shrestha, B. Mohammadi-Ivatloo, R. Sadiq, and K. Hewage, “Enhanced real-time scheduling algorithm for energy management in a renewable-integrated microgrid,” Appl. Energy, vol. 304, p. 117658, Dec. 2021. doi: 10.1016/j.apenergy.2021.117658
|
[89] |
K. Zhou, J. P. Pan, and L. Cai, “Optimal combined heat and power system scheduling in smart grid,” in Proc. IEEE Conf. Computer Communications, Toronto, Canada, 2014, pp. 2831–2839.
|
[90] |
G. L. Zhang, Z. R. Shen, and L. Wang, “Online energy management for microgrids with CHP co-generation and energy storage,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 533–541, Mar. 2020. doi: 10.1109/TCST.2018.2873193
|
[91] |
H. Li, W. X. Sheng, Q. Duan, Z. Li, C. H. Zhu, and X. Y. Zhang, “A Lyapunov optimization-based energy management strategy for energy hub with energy router,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 4860–4870, Nov. 2020. doi: 10.1109/TSG.2020.2968747
|
[92] |
S. Zeinal-Kheiri, S. Ghassem-Zadeh, A. M. Shotorbani, and B. Mohammadi-Ivatloo, “Real-time energy management in a microgrid with renewable generation, energy storages, flexible loads and combined heat and power units using Lyapunov optimisation,” IET Renewable Power Gener., vol. 14, no. 4, pp. 526–538, Mar. 2020. doi: 10.1049/iet-rpg.2019.0297
|
[93] |
G. F. Wang, X. D. Yang, W. H. Cai, and Y. B. Zhang, “Event-triggered online energy flow control strategy for regional integrated energy system using Lyapunov optimization,” Int. J. Electr. Power Energy Syst., vol. 125, p. 106451, Feb. 2021. doi: 10.1016/j.ijepes.2020.106451
|
[94] |
J. Yan, M. Menghwar, E. Asghar, M. K. Panjwani, and Y. Q. Liu, “Real-time energy management for a smart-community microgrid with battery swapping and renewables,” Appl. Energy, vol. 238, pp. 180–194, Mar. 2019. doi: 10.1016/j.apenergy.2018.12.078
|
[95] |
A. Ahmad and J. Y. Khan, “Real-time load scheduling and storage management for solar powered network connected EVs,” IEEE Trans. Sustain. Energy, vol. 11, no. 3, pp. 1220–1235, Jul. 2020. doi: 10.1109/TSTE.2019.2921024
|
[96] |
T. Liu, Y. M. Zhu, H. Z. Zhu, J. D. Yu, Y. Y. Yang, and F. Ye, “Online pricing for efficient renewable energy sharing in a sustainable microgrid,” Comput. J., vol. 60, no. 2, pp. 268–284, Feb. 2017.
|
[97] |
N. Liu, X. H. Yu, W. Fan, C. G. Hu, T. Rui, Q. F. Chen, and J. H. Zhang, “Online energy sharing for nanogrid clusters: A Lyapunov optimization approach,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4624–4636, Sept. 2018. doi: 10.1109/TSG.2017.2665634
|
[98] |
D. F. Zhu, B. Yang, Q. Liu, K. Ma, S. Y. Zhu, C. B. Ma, and X. Guan, “Energy trading in microgrids for synergies among electricity, hydrogen and heat networks,” Appl. Energy, vol. 272, p. 115225, Aug. 2020. doi: 10.1016/j.apenergy.2020.115225
|
[99] |
L. Zheng and L. Cai, “A distributed demand response control strategy using Lyapunov optimization,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2075–2083, Jul. 2014. doi: 10.1109/TSG.2014.2313347
|
[100] |
S. Sun, M. Dong, and B. Liang, “Distributed real-time power balancing in renewable-integrated power grids with storage and flexible loads,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2337–2349, Sept. 2016. doi: 10.1109/TSG.2015.2445794
|
[101] |
W. F. Zhong, K. Xie, Y. Liu, C. Yang, S. L. Xie, and Y. Zhang, “Online control and near-optimal algorithm for distributed energy storage sharing in smart grid,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2552–2562, May 2020. doi: 10.1109/TSG.2019.2957426
|
[102] |
S. Fan, J. Liu, Q. Wu, M. J. Cui, H. Zhou, and G. Y. He, “Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm,” Appl. Energy, vol. 277, p. 115583, Nov. 2020. doi: 10.1016/j.apenergy.2020.115583
|
[103] |
H. L. Zhu and K. Ouahada, “A distributed real-time control algorithm for energy storage sharing,” Energy Build., vol. 230, p. 110478, Jan. 2021. doi: 10.1016/j.enbuild.2020.110478
|
[104] |
T. Y. Li and M. Dong, “Real-time energy storage management with renewable integration: Finite-time horizon approach,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2524–2539, Dec. 2015. doi: 10.1109/JSAC.2015.2481212
|
[105] |
T. Y. Li and M. Dong, “Real-time residential-side joint energy storage management and load scheduling with renewable integration,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 283–298, Jan. 2018. doi: 10.1109/TSG.2016.2550500
|
[106] |
T. Y. Li and M. Dong, “Residential energy storage management with bidirectional energy control,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3596–3611, Jul. 2019. doi: 10.1109/TSG.2018.2832621
|
[107] |
M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,” in Proc. 20th Int. Conf. Machine Learning, Washington, USA, 2003, pp. 928–936.
|
[108] |
Y. F. Mo, Q. L. Lin, M. H. Chen, and S. Z. J. Qin, “Optimal online algorithms for peak-demand reduction maximization with energy storage,” in Proc. 12th ACM Int. Conf. Future Energy Systems, Torino, Italy, 2021, pp. 73–83.
|
[109] |
A. Menati, S. C. K. Chau, and M. H. Chen, “Competitive prediction-aware online algorithms for energy generation scheduling in microgrids,” in Proc. 13th ACM Int. Conf. Future Energy Systems, 2022, pp. 383–394.
|
[110] |
T. Y. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization approach to proactive network resource allocation,” IEEE Trans. Signal Process., vol. 65, no. 24, pp. 6350–6364, Dec. 2017. doi: 10.1109/TSP.2017.2750109
|
[111] |
X. Y. Cao and K. J. R. Liu, “Online convex optimization with time-varying constraints and bandit feedback,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2665–2680, Jul. 2019. doi: 10.1109/TAC.2018.2884653
|
[112] |
X. L. Yi, X. X. Li, L. H. Xie, and K. H. Johansson, “Distributed online convex optimization with time-varying coupled inequality constraints,” IEEE Trans. Signal Process., vol. 68, pp. 731–746, Jan. 2020. doi: 10.1109/TSP.2020.2964200
|
[113] |
A. Lesage-Landry and D. S. Callaway, “Dynamic and distributed online convex optimization for demand response of commercial buildings,” IEEE Control Syst. Lett., vol. 4, no. 3, pp. 632–637, Jul. 2020. doi: 10.1109/LCSYS.2020.2989110
|
[114] |
D. M. Yuan, A. Proutiere, and G. D. Shi, “Distributed online optimization with long-term constraints,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1089–1104, Mar. 2022. doi: 10.1109/TAC.2021.3057601
|
[115] |
A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the bandit setting: Gradient descent without a gradient,” in Proc. 16th Annu. ACM-SIAM Symp. Discrete Algorithms, Vancouver, Canada, 2005, pp. 385–394.
|
[116] |
X. L. Yi, X. X. Li, T. Yang, L. H. Xie, T. Y. Chai, and K. H. Johansson, “Distributed bandit online convex optimization with time-varying coupled inequality constraints,” IEEE Trans. Automa. Control, vol. 66, no. 10, pp. 4620–4635, Oct. 2021. doi: 10.1109/TAC.2020.3030883
|
[117] |
E. Hazan, “Introduction to online convex optimization,” Found. Trends Optim., vol. 2, no. 3–4, pp. 157–325, Aug. 2016.
|
[118] |
S. Shalev-Shwartz, “Online learning and online convex optimization,” Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011. doi: 10.1561/2200000018
|
[119] |
M. Badiei, N. Li, and A. Wierman, “Online convex optimization with ramp constraints,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 6730–6736.
|
[120] |
W. J. Ma, V. Gupta, and U. Topcu, “Distributed charging control of electric vehicles using online learning,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5289–5295, Oct. 2017. doi: 10.1109/TAC.2016.2636740
|
[121] |
S. J. Kim and G. B. Giannakis, “An online convex optimization approach to real-time energy pricing for demand response,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2784–2793, Nov. 2017. doi: 10.1109/TSG.2016.2539948
|
[122] |
S. Bahrami, V. W. S. Wong, and J. W. Huang, “An online learning algorithm for demand response in smart grid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4712–4725, Sept. 2018. doi: 10.1109/TSG.2017.2667599
|
[123] |
S. Bahrami, Y. C. Chen, and V. W. S. Wong, “An online algorithm for data center demand response,” in Proc. 53rd Annu. Conf. Information Sciences and Systems, Baltimore, USA, 2019, pp. 1–6.
|
[124] |
A. Lesage-Landry, H. Wang, I. Shames, Mancarella, and J. A. Taylor, “Online convex optimization of multi-energy building-to-grid ancillary services,” IEEE Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2416–2431, Nov. 2020. doi: 10.1109/TCST.2019.2944328
|
[125] |
X. Chen, Y. T. Nie, and N. Li, “Online residential demand response via contextual multi-armed bandits,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 433–438, Apr. 2021. doi: 10.1109/LCSYS.2020.3003190
|
[126] |
T. Q. Zhao, A. Parisio, and J. V. Milanović, “Distributed control of battery energy storage systems for improved frequency regulation,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 3729–3738, Sept. 2020. doi: 10.1109/TPWRS.2020.2974026
|
[127] |
Ya ng, F. Liu, Z. J. Wang, and C. Shen, “Distributed stability conditions for power systems with heterogeneous nonlinear bus dynamics,” IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2313–2324, May 2020. doi: 10.1109/TPWRS.2019.2951202
|
[128] |
T. Yang, X. L. Yi, J. F. Wu, Y. Yuan, D. Wu, Z. Y. Meng, Y. G. Hong, H. Wang, Z. L. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annu. Rev. Control, vol. 47, pp. 278–305, May 2019. doi: 10.1016/j.arcontrol.2019.05.006
|
[129] |
D. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1439–1451, Aug. 2006. doi: 10.1109/JSAC.2006.879350
|
[130] |
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
|
[131] |
V. Smith, S. Forte, C. X. Ma, M. Takáč, M. I. Jordan, and M. Jaggi, “CoCoA: A general framework for communication-efficient distributed optimization,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 8590–8638, Jan. 2017.
|
[132] |
Y. F. Zhang, Y. F. Su, and F. Liu, “Protocol for constrained multi-agent optimization with arbitrary local solvers,” in Proc. 11th Int. Conf. Information Science and Technology, Chengdu, China, 2021, pp. 148–157.
|
[133] |
L. Q. Guo and S. H. Low, “Spectral characterization of controllability and observability for frequency regulation dynamics,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, pp. 6313–6320.
|
[134] |
A. Ademola-Idowu and B. S. Zhang, “Frequency stability using MPC-based inverter power control in low-inertia power systems,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1628–1637, Mar. 2021. doi: 10.1109/TPWRS.2020.3019998
|
[135] |
T. Yang, L. Y. Zhao, W. Li, and A. Y. Zomaya, “Reinforcement learning in sustainable energy and electric systems: A survey,” Annu. Rev. Control, vol. 49, pp. 145–163, Apr. 2020. doi: 10.1016/j.arcontrol.2020.03.001
|
[136] |
X. Chen, G. N. Qu, Y. J. Tang, S. Low, and N. Li, “Reinforcement learning for selective key applications in power systems: Recent advances and future challenges,” IEEE Trans. Smart Grid, vol. 13, no. 4, Jul. 2022.
|
[137] |
Z. Wang, C. L. Chen, and D. Y. Dong, “Instance weighted incremental evolution strategies for reinforcement learning in dynamic environments,” IEEE Trans. Neural Netw. Learn. Syst., 2022, DOI: 10.1109/TNNLS.2022.3160173.
|
[138] |
G. N. Qu, C. K. Yu, S. Low, and A. Wierman, “Combining model-based and model-free methods for nonlinear control: A provably convergent policy gradient approach,” arXiv preprint arXiv: 2006.07476, 2020.
|
[139] |
Q. Wang, F. Li, Y. Tang, and Y. Xu, “Integrating model-driven and data-driven methods for power system frequency stability assessment and control,” IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4557–4568, Nov. 2019. doi: 10.1109/TPWRS.2019.2919522
|
[140] |
Y. Y. Li, G. N. Qu, and N. Li, “Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4761–4768, Oct. 2021. doi: 10.1109/TAC.2020.3040249
|
[141] |
T. Morstyn, N. Farrell, S. J. Darby, and M. D. McCulloch, “Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants,” Nat. Energy, vol. 3, no. 2, pp. 94–101, Feb. 2018. doi: 10.1038/s41560-017-0075-y
|
[142] |
Z. J. Wang, F. Liu, Z. Y. Ma, Y. Chen, M. S. Jia, W. Wei, and Q. W. Wu, “Distributed generalized Nash equilibrium seeking for energy sharing games in prosumers,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3973–3986, Sept. 2021. doi: 10.1109/TPWRS.2021.3058675
|
[143] |
J. R. Wang, Y. T. Hong, J. L. Wang, J. Xu, Y. Tang, Q. L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, May 2022.
|
[144] |
Y. W. Zhang, S. Liang, X. H. Wang, and H. B. Ji, “Distributed Nash equilibrium seeking for aggregative games with nonlinear dynamics under external disturbances,” IEEE Trans. Cybern., vol. 50, no. 12, pp. 4876–4885, Dec. 2020. doi: 10.1109/TCYB.2019.2929394
|
[145] |
Y. N. Zhu, W. W. Yu, W. Ren, G. H. Wen, and J. Gu, “Generalized Nash equilibrium seeking via continuous-time coordination dynamics over digraphs,” IEEE Trans. Control Netw. Syst., vol. 8, no. 2, pp. 1023–1033, Jun. 2021. doi: 10.1109/TCNS.2021.3056034
|
[146] |
Z. H. Deng, “Distributed Nash equilibrium seeking for aggregative games with second-order nonlinear players,” Automatica, vol. 135, p. 109980, Jan. 2022. doi: 10.1016/j.automatica.2021.109980
|
[147] |
Yi and L. Pavel, “An operator splitting approach for distributed generalized Nash equilibria computation,” Automatica, vol. 102, pp. 111–121, Apr. 2019. doi: 10.1016/j.automatica.2019.01.008
|
[148] |
A. Agarwal, J. W. Simpson-Porco, and L. Pavel, “Game-theoretic feedback-based optimization,” IFAC-PapersOnLine, vol. 55, no. 13, pp. 174–179, Jan. 2022. doi: 10.1016/j.ifacol.2022.07.255
|
[149] |
M. Meng, X. X. Li, Y. G. Hong, J. Chen, and L. Wang, “Decentralized online learning for noncooperative games in dynamic environments,” arXiv preprint arXiv: 2105.06200, 2021.
|
[150] |
K. H. Lu, G. Q. Li, and L. Wang, “Online distributed algorithms for seeking generalized Nash equilibria in dynamic environments,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2289–2296, May 2021. doi: 10.1109/TAC.2020.3002592
|