IEEE/CAA Journal of Automatica Sinica
Citation: | T. Q. Yu, Y.-J. Liu, and L. Liu, “Adaptive neural control for nonlinear MIMO function constraint systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 816–818, Mar. 2023. doi: 10.1109/JAS.2023.123105 |
[1] |
W. He, S. S. Ge, B. V. E. How, Y. S. Choo, and K. S. Hong, “Robust adaptive boundary control of a flexible marine riser with vessel dynamics,” Automatica, vol. 47, no. 4, pp. 722–732, 2011. doi: 10.1016/j.automatica.2011.01.064
|
[2] |
W. He, S. Zhang, and S. S. Ge, “Robust adaptive control of a thruster assisted position mooring system,” Automatica, vol. 50, no. 7, pp. 1843–1851, 2014. doi: 10.1016/j.automatica.2014.04.023
|
[3] |
S. N. Huang, K. K. Tan, and T. H. Lee, “Nonlinear adaptive control of interconnected systems using neural networks,” IEEE Trans. Neural Networks, vol. 17, no. 1, pp. 243–246, 2006. doi: 10.1109/TNN.2005.857948
|
[4] |
H. Wang, K. Xu, P. X. Liu, and J. Qiao, “Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4337–4348, 2021. doi: 10.1109/TCSI.2021.3098830
|
[5] |
S. C. Tong, C. Y. Li, and Y. M. Li, “Fuzzy adaptive observer backstepping control for MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 160, no. 19, pp. 2755–2775, 2009. doi: 10.1016/j.fss.2009.03.008
|
[6] |
C. Wu, J. Liu, Y. Xiong, and L. Wu, “Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3022–3033, 2018.
|
[7] |
G. Z. Cui, et al., “Adaptive tracking control for uncertain switched stochastic nonlinear pure-feedback systems with unknown backlash-like hysteresis,” J. Franklin Institute, vol. 354, no. 4, pp. 1801–1818, 2017. doi: 10.1016/j.jfranklin.2016.12.029
|
[8] |
J. Sun, J. Yi, and Z. Pu, “Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations,” IEEE Trans. Fuzzy Systems, vol. 30, no. 4, pp. 1114–1128, 2022. doi: 10.1109/TFUZZ.2021.3052610
|
[9] |
Z. Zhang and Y. Wu, “Adaptive fuzzy tracking control of autonomous underwater vehicles with output constraints,” IEEE Trans. Fuzzy Systems, vol. 29, no. 5, pp. 1311–1319, 2021. doi: 10.1109/TFUZZ.2020.2967294
|
[10] |
C. Si, Q. G. Wang, and J. Yu, “Event-triggered adaptive fuzzy neural network output feedback control for constrained stochastic nonlinear systems,” IEEE Trans. Neural Networks and Learning Systems, 2022. DOI: 10.1109/TNNLS.2022.3203419
|
[11] |
W. Zhao, Y.-J. Liu, and L. Liu, “Observer-based adaptive fuzzy tracking control using integral barrier Lyapunov functionals for a nonlinear system with full state constraints,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 617–627, 2021. doi: 10.1109/JAS.2021.1003877
|
[12] |
C. Si, Q. G. Wang, G. Cui, and J. Yu, “Event-triggered adaptive output feedback control for stochastic nonlinear systems with time-varying full-state constraints,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 70, no. 1, pp. 251–253, Jan. 2023. doi: 10.1109/TCSII.2022.3203418
|
[13] |
S. C. Tong, Y. Li, G. Feng, and T. Li, “Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics), vol. 41, no. 4, pp. 1124–1135, 2011. doi: 10.1109/TSMCB.2011.2108283
|
[14] |
Q. Zhou, P. Shi, Y. Tian, and M. Wang, “Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation,” IEEE Trans. Cybernetics, vol. 45, no. 10, pp. 2119–2128, 2015. doi: 10.1109/TCYB.2014.2365778
|
[15] |
Y. J. Liu, S. C. Tong, C. L. P. Chen, and D. Li, “Adaptive NN control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems,” IEEE Trans. Cybernetics, vol. 47, no. 11, pp. 3747–3757, 2017. doi: 10.1109/TCYB.2016.2581173
|
[16] |
P. H. Du, H. J. Liang, S. Y. Zhao, and C. K. Ahn, “Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 51, no. 5, pp. 3146–3147, 2021.
|