A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 3
Mar.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
B. Q. Li, S. P. Wen, Z. Yan, G. H. Wen, and T. W. Huang, “A survey on the control Lyapunov function and control barrier function for nonlinear-affine control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 584–602, Mar. 2023. doi: 10.1109/JAS.2023.123075
Citation: B. Q. Li, S. P. Wen, Z. Yan, G. H. Wen, and T. W. Huang, “A survey on the control Lyapunov function and control barrier function for nonlinear-affine control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 584–602, Mar. 2023. doi: 10.1109/JAS.2023.123075

A Survey on the Control Lyapunov Function and Control Barrier Function for Nonlinear-Affine Control Systems

doi: 10.1109/JAS.2023.123075
Funds:  This work was supported in part by the National Natural Science Foundation of China (U22B2046, 62073079, 62088101), in part by the General Joint Fund of the Equipment Advance Research Program of Ministry of Education (8091B022114), and in part by NPRP (NPRP 9-466-1-103) from Qatar National Research Fund
More Information
  • This survey provides a brief overview on the control Lyapunov function (CLF) and control barrier function (CBF) for general nonlinear-affine control systems. The problem of control is formulated as an optimization problem where the optimal control policy is derived by solving a constrained quadratic programming (QP) problem. The CLF and CBF respectively characterize the stability objective and the safety objective for the nonlinear control systems. These objectives imply important properties including controllability, convergence, and robustness of control problems. Under this framework, optimal control corresponds to the minimal solution to a constrained QP problem. When uncertainties are explicitly considered, the setting of the CLF and CBF is proposed to study the input-to-state stability and input-to-state safety and to analyze the effect of disturbances. The recent theoretic progress and novel applications of CLF and CBF are systematically reviewed and discussed in this paper. Finally, we provide research directions that are significant for the advance of knowledge in this area.

     

  • loading
  • 1 The system model comes from [50].
    2 The system model comes from [50].
    3 The pendulum system model comes from [78].
    4 The system model comes from [83].
    5 The system model and experimental parameters come from [35].
    6 The system model and experimental parameters come from [32].
  • [1]
    G. J. Pappas and S. Simic, “Consistent abstractions of affine control systems,” IEEE Trans. Autom. Control, vol. 47, no. 5, pp. 745–756, May 2002. doi: 10.1109/TAC.2002.1000269
    [2]
    H. G. Zhang, Y. H. Luo, and D. R. Liu, “Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503, Sept. 2009. doi: 10.1109/TNN.2009.2027233
    [3]
    N. Nakamura, H. Nakamura, Y. Yamashita, and H. Nishitani, “Homogeneous stabilization for input affine homogeneous systems,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2271–2275, Sept. 2009. doi: 10.1109/TAC.2009.2026865
    [4]
    Y. B. Wang, J. Y. Hang, and M. L. Zhang, “Stable label-specific features generation for multi-label learning via mixture-based clustering ensemble,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1248–1261, Jul. 2022. doi: 10.1109/JAS.2022.105518
    [5]
    Y. H. Wang, X. D. Li, and S. J. Song, “Input-to-state stabilization of nonlinear impulsive delayed systems: An observer-based control approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1273–1283, Jul. 2022. doi: 10.1109/JAS.2022.105422
    [6]
    W. He, Z. Yin, and C. Y. Sun, “Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1641–1651, Jul. 2017. doi: 10.1109/TCYB.2016.2554621
    [7]
    S. M. Khansari-Zadeh and A. Billard, “Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions,” Rob. Auton. Syst., vol. 62, no. 6, pp. 752–765, Jun. 2014. doi: 10.1016/j.robot.2014.03.001
    [8]
    N. Gaby, F. M. Zhang, and X. J. Ye, “Lyapunov-Net: A deep neural network architecture for Lyapunov function approximation,” arXiv preprint arXiv: 2109.13359, 2021.
    [9]
    C. E. Ren, J. A. Zhang, and Y. Guan, “Prescribed performance bipartite consensus control for stochastic nonlinear multiagent systems under event-triggered strategy,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 468–482, 2023.
    [10]
    J. J. Fu, G. H. Wen, X. H. Yu, and Z. G. Wu, “Distributed formation navigation of constrained second-order multiagent systems with collision avoidance and connectivity maintenance,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2149–2162, Apr. 2022. doi: 10.1109/TCYB.2020.3000264
    [11]
    Y. Z. Lu, X. W. Dong, Q. D. Li, J. H. Lü, and Z. Ren, “Time-varying group formation-containment tracking control for general linear multiagent systems with unknown inputs,” IEEE Trans. Cybern., vol. 52, no. 10, pp. 11055–11067, Oct. 2022. doi: 10.1109/TCYB.2021.3058086
    [12]
    S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic safety verification using barrier certificates,” IEEE Trans. Autom. Control, vol. 52, no. 8, pp. 1415–1428, Aug. 2007. doi: 10.1109/TAC.2007.902736
    [13]
    S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan, “Bridging the gap between safety and real-time performance in receding-horizon trajectory design for mobile robots,” Int. J. Rob. Res., vol. 39, no. 12, pp. 1419–1469, Oct. 2020. doi: 10.1177/0278364920943266
    [14]
    J. Zeng, B. K. Zhang, and K. Sreenath, “Safety-critical model predictive control with discrete-time control barrier function,” in Proc. American Control Conf., New Orleans, USA, 2021, pp. 3882–3889.
    [15]
    A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimization,” SIAM Rev., vol. 44, no. 4, pp. 525–597, Dec. 2002. doi: 10.1137/S0036144502414942
    [16]
    P. Wieland and F. Allgöwer, “Constructive safety using control barrier functions,” IFAC Proc. Vol., vol. 40, no. 12, pp. 462–467, Aug. 2007. doi: 10.3182/20070822-3-ZA-2920.00076
    [17]
    S. Prajna and A. Rantzer, “Convex programs for temporal verification of nonlinear dynamical systems,” SIAM J. Control Optim., vol. 46, no. 3, pp. 999–1021, Jun. 2007. doi: 10.1137/050645178
    [18]
    R. Wisniewski and C. Sloth, “Converse barrier certificate theorems,” IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1356–1361, May 2016. doi: 10.1109/TAC.2015.2476155
    [19]
    M. Hajiahmadi, B. De Schutter, and H. Hellendoorn, “Design of stabilizing switching laws for mixed switched affine systems,” IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1676–1681, Jun. 2016. doi: 10.1109/TAC.2015.2480216
    [20]
    Z. H. Peng, D. Wang, T. S. Li, and M. Han, “Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2527–2535, Jun. 2020. doi: 10.1109/TCYB.2019.2914717
    [21]
    E. G. Gilbert and I. Kolmanovsky, “A generalized reference governor for nonlinear systems,” in Proc. 40th IEEE Conf. Decision and Control, Orlando, USA, 2001, pp. 4222–4227.
    [22]
    J. Wolff and M. Buss, “Invariance control design for constrained nonlinear systems,” IFAC Proc. Vol., vol. 38, no. 1, pp. 37–42, Jul. 2005.
    [23]
    K. B. Ngo, R. Mahony, and Z. P. Jiang, “Integrator backstepping using barrier functions for systems with multiple state constraints,” in Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, 2005, pp. 8306–8312.
    [24]
    K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, Apr. 2009. doi: 10.1016/j.automatica.2008.11.017
    [25]
    M. Z. Romdlony and B. Jayawardhana, “Uniting control Lyapunov and control barrier functions,” in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014, pp. 2293–2298.
    [26]
    R. A. Freeman and J. A. Primbs, “Control Lyapunov functions: New ideas from an old source,” in Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, 1996, pp. 3926v3931.
    [27]
    A. D. Ames, K. Galloway, and J. W. Grizzle, “Control Lyapunov functions and hybrid zero dynamics,” in Proc. IEEE 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp. 6837–6842.
    [28]
    A. D. Ames and M. Powell, “Towards the unification of locomotion and manipulation through control Lyapunov functions and quadratic programs,” in Control of Cyber-Physical Systems, D. C. Tarraf, Ed. Heidelberg, Germany: Springer, 2013, pp. 219–240.
    [29]
    A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 876–891, Apr. 2014. doi: 10.1109/TAC.2014.2299335
    [30]
    R. A. Freeman and P. V. Kokotovic, “Inverse optimality in robust stabilization,” SIAM J. Control Optim., vol. 34, no. 4, pp. 1365–1391, Jul. 1996. doi: 10.1137/S0363012993258732
    [31]
    T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D. Ames, “Model-free safety-critical control for robotic systems,” IEEE Rob. Autom. Lett., vol. 7, no. 2, pp. 944–951, Apr. 2022. doi: 10.1109/LRA.2021.3135569
    [32]
    A. D. Ames, X. R. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017. doi: 10.1109/TAC.2016.2638961
    [33]
    S. K. Sahoo, S. Dasgupta, S. K. Panda, and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 555–564, Feb. 2012. doi: 10.1109/TPEL.2011.2132740
    [34]
    A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe controller synthesis with tunable input-to-state safe control barrier functions,” IEEE Control Syst. Lett., vol. 6, pp. 908–913, 2022. doi: 10.1109/LCSYS.2021.3087443
    [35]
    P. Zhao, Y. B. Mao, C. Y. Tao, N. Hovakimyan, and X. F. Wang, “Adaptive robust quadratic programs using control Lyapunov and barrier functions,” in Proc. 59th IEEE Conf. Decision and Control, Jeju, Korea (South), 2020, pp. 3353v3358.
    [36]
    R. Takano and M. Yamakita, “Robust constrained stabilization control using control Lyapunov and control barrier function in the presence of measurement noises,” in Proc. IEEE Conf. Control Technology and Applications, Copenhagen, Denmark, 2018, pp. 300–305.
    [37]
    A. Isidori, Nonlinear Control Systems: An Introduction. Berlin, Germany: Springer, 1985.
    [38]
    I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Trans. Autom. Control, vol. 36, no. 11, pp. 1241–1253, Nov. 1991. doi: 10.1109/9.100933
    [39]
    M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 447–451, Mar. 1996. doi: 10.1109/9.486648
    [40]
    B. Yao and M. Tomizuka, “Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form,” Automatica, vol. 33, no. 5, pp. 893–900, May 1997. doi: 10.1016/S0005-1098(96)00222-1
    [41]
    T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network control for strict-feedback nonlinear systems using backstepping design,” Automatica, vol. 36, no. 12, pp. 1835–1846, Dec. 2000. doi: 10.1016/S0005-1098(00)00116-3
    [42]
    Y. X. Li and G. H. Yang, “Model-based adaptive event-triggered control of strict-feedback nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1033–1045, Apr. 2018. doi: 10.1109/TNNLS.2017.2650238
    [43]
    D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1910–1914, Sept. 1994. doi: 10.1109/9.317122
    [44]
    A. Shariati and Q. Zhao, “Robust leader-following output regulation of uncertain multi-agent systems with time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 807–817, Jul. 2018. doi: 10.1109/JAS.2018.7511141
    [45]
    H. F. Min, S. Y. Xu, B. Y. Zhang, Q. Ma, and D. M. Yuan, “Fixed-time Lyapunov criteria and state-feedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539
    [46]
    Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Anal. Theory Methods Appl., vol. 7, no. 11, pp. 1163–1173, Jan. 1983. doi: 10.1016/0362-546X(83)90049-4
    [47]
    E. D. Sontag, “A ‘universal’ construction of artstein’s theorem on nonlinear stabilization,” Syst Control Lett., vol. 13, no. 2, pp. 117–123, Aug. 1989. doi: 10.1016/0167-6911(89)90028-5
    [48]
    Y. Q. He and J. D. Han, “Generalized point wise min-norm control based on control Lyapunov functions,” in Proc. Chinese Control Conf., Zhangjiajie, China, 2007, pp. 404–408.
    [49]
    R. Furqon, Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, “An SOS-based control Lyapunov function design for polynomial fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 775–787, Aug. 2017. doi: 10.1109/TFUZZ.2016.2578339
    [50]
    S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. New York, USA: Springer, 2013.
    [51]
    G. F. Wu and K. Sreenath, “Safety-critical and constrained geometric control synthesis using control Lyapunov and control barrier functions for systems evolving on manifolds,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 2038–2044.
    [52]
    S. C. Hsu, X. R. Xu, and A. D. Ames, “Control barrier function based quadratic programs with application to bipedal robotic walking,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 4542–4548.
    [53]
    Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in Proc. American Control Conf., Boston, USA, 2016, pp. 322–328.
    [54]
    T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a framework for realizable safety critical control through active set invariance,” in Proc. ACM/IEEE 9th Int. Conf. Cyber-Physical Systems, Porto, Portugal, 2018, pp. 98–106.
    [55]
    B. J. Morris, M. J. Powell, and A. D. Ames, “Continuity and smoothness properties of nonlinear optimization-based feedback controllers,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 151–158.
    [56]
    M. Jankovic, “Robust control barrier functions for constrained stabilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367, Oct. 2018. doi: 10.1016/j.automatica.2018.07.004
    [57]
    K. Sreenath, H. W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on mabel,” Int. J. Rob. Res., vol. 30, no. 9, pp. 1170–1193, Aug. 2011. doi: 10.1177/0278364910379882
    [58]
    S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 12619–12629.
    [59]
    S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010. doi: 10.1109/TKDE.2009.191
    [60]
    Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simulation randomization with real world experience,” in Proc. Int. Conf. Robotics and Automation, Montreal, Canada, 2019, pp. 8973–8979.
    [61]
    E. Valassakis, Z. H. Ding, and E. Johns, “Crossing the gap: A deep dive into zero-shot sim-to-real transfer for dynamics,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, USA, 2020, pp. 5372–5379.
    [62]
    D. Rastogi, I. Koryakovskiy, and J. Kober, “Sample-efficient reinforcement learning via difference models,” in Proc. 3rd Machine Learning in Planning and Control of Robot Motion Workshop at ICRA, 2018.
    [63]
    Q. Nguyen and K. Sreenath, “Optimal robust control for constrained nonlinear hybrid systems with application to bipedal locomotion,” in Proc. American Control Conf., Boston, USA, 2016, pp. 4807–4813.
    [64]
    N. Hovakimyan and C. Y. Cao, ${\cal{L}}_1 $ Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2010.
    [65]
    X. F. Wang, L. X. Yang, Y. Sun, and K. Deng, “Adaptive model predictive control of nonlinear systems with state-dependent uncertainties,” Int. J. Robust Nonlinear Control, vol. 27, no. 17, pp. 4138–4153, Nov. 2017. doi: 10.1002/rnc.3787
    [66]
    E. D. Sontag and Y. Wang, “On characterizations of input-to-state stability with respect to compact sets,” in Nonlinear Control Systems Design 1995, A. J. Krener and D. Q. Mayne, Eds. Amsterdam, Netherlands: Elsevier, 1995, pp. 203–208.
    [67]
    S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier functions,” IEEE Control Syst. Lett., vol. 3, no. 1, pp. 108–113, Jan. 2019. doi: 10.1109/LCSYS.2018.2853698
    [68]
    J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath, “Reinforcement learning for safety-critical control under model uncertainty, using control Lyapunov functions and control barrier functions,” in Proc. Robotics: Science and Systems, Corvalis, Oregon, USA, July 2020.
    [69]
    A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. D. Yue, and A. D. Ames, “Episodic learning with control Lyapunov functions for uncertain robotic systems,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Macau, China, 2019, pp. 6878–6884.
    [70]
    L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free Theory of Nonparametric Regression. New York, USA: Springer, 2002.
    [71]
    A. Taylor, A. Singletary, Y. S. Yue, and A. Ames, “Learning for safety-critical control with control barrier functions,” in Proc. 2nd Confer. Learning for Dynamics and Control, Delft, Netherlands, 2020, pp. 708–717.
    [72]
    C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, USA: MIT Press, 2006.
    [73]
    J. Umlauft, L. Pöhler, and S. Hirche, “An uncertainty-based control Lyapunov approach for control-affine systems modeled by Gaussian process,” IEEE Control Syst. Lett., vol. 2, no. 3, pp. 483–488, Jul. 2018. doi: 10.1109/LCSYS.2018.2841961
    [74]
    F. Castaneda, J. J. Choi, B. K. Zhang, C. J. Tomlin, and K. Sreenath, “Pointwise feasibility of Gaussian process-based safety-critical control under model uncertainty,” in Proc. 60th IEEE Conf. Decision and Control, Austin, USA, 2021. pp. 6762–6769.
    [75]
    R. Cheng, M. J. Khojasteh, A. D. Ames, and J. W. Burdick, “Safe multi-agent interaction through robust control barrier functions with learned uncertainties,” in Proc. 59th IEEE Conf. Decision and Control, Jeju, Korea (South), 2020, pp. 777–783.
    [76]
    M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control using control barrier functions,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Daejeon, Korea (South), 2016, pp. 279–285.
    [77]
    W. Shaw-Cortez, D. Oetomo, C. Manzie, and P. Choong, “Tactile-based blind grasping: A discrete-time object manipulation controller for robotic hands,” IEEE Rob. Autom. Lett., vol. 3, no. 2, pp. 1064–1071, Apr. 2018. doi: 10.1109/LRA.2018.2794612
    [78]
    W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier functions for mechanical systems: Theory and application to robotic grasping,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 530–545, Mar. 2021. doi: 10.1109/TCST.2019.2952317
    [79]
    D. Seto and L. Sha, “A case study on analytical analysis of the inverted pendulum real-time control system,” Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst, Tech. Rep., 1999.
    [80]
    D. J. Block, K. J. Åström, and M. W. Spong, The Reaction Wheel Pendulum. Cham, Germany: Springer, 2007, pp. 1–105.
    [81]
    M. W. Spong, P. Corke, and R. Lozano, “Nonlinear control of the reaction wheel pendulum,” Automatica, vol. 37, no. 11, pp. 1845–1851, Nov. 2001. doi: 10.1016/S0005-1098(01)00145-5
    [82]
    J. Long, W. Wang, J. S. Huang, J. H. Lü, and K. X. Liu, “Adaptive leaderless consensus for uncertain high-order nonlinear multiagent systems with event-triggered communication,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 11, pp. 7101–7111, Nov. 2022. doi: 10.1109/TSMC.2022.3150931
    [83]
    B. Q. Li, G. G. Wen, Z. X. Peng, T. W. Huang, and A. Rahmani, “Fully distributed consensus tracking of stochastic nonlinear multiagent systems with Markovian switching topologies via intermittent control,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 5, pp. 3200–3209, May 2022. doi: 10.1109/TSMC.2021.3063907
    [84]
    L. Briñó-Arranz, A. Seuret, and C. Canudas-de-Wit, “Cooperative control design for time-varying formations of multi-agent systems,” IEEE Trans. Autom. Control, vol. 59, no. 8, pp. 2283–2288, Aug. 2014. doi: 10.1109/TAC.2014.2303213
    [85]
    H. J. Ma, G. H. Yang, and T. W. Chen, “Event-triggered optimal dynamic formation of heterogeneous affine nonlinear multiagent systems,” IEEE Trans. Autom. Control, vol. 66, no. 2, pp. 497–512, Feb. 2021. doi: 10.1109/TAC.2020.2983108
    [86]
    W. Jiang, G. G. Wen, Z. X. Peng, T. W. Huang, and A. Rahmani, “Fully distributed formation-containment control of heterogeneous linear multiagent systems,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3889–3896, Sept. 2019. doi: 10.1109/TAC.2018.2887409
    [87]
    Z. Zhang and M. Y. Chow, “Incremental cost consensus algorithm in a smart grid environment,” in Proc. IEEE Power and Energy Society General Meeting, Detroit, USA, 2011, pp. 1–6.
    [88]
    T. Yang, D. Wu, Y. N. Sun, and J. M. Lian, “Minimum-time consensus-based approach for power system applications,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1318–1328, Feb. 2016. doi: 10.1109/TIE.2015.2504050
    [89]
    S. P. Yang, S. C. Tan, and J. X. Xu, “Consensus based approach for economic dispatch problem in a smart grid,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4416–4426, Nov. 2013. doi: 10.1109/TPWRS.2013.2271640
    [90]
    M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot ecology: Constraint-based control design for long duration autonomy,” Annu. Rev. Control, vol. 46, pp. 1–7, Sept. 2018. doi: 10.1016/j.arcontrol.2018.09.006
    [91]
    G. Notomista, S. F. Ruf, and M. Egerstedt, “Persistification of robotic tasks using control barrier functions,” IEEE Rob. Autom. Lett., vol. 3, no. 2, pp. 758–763, Apr. 2018. doi: 10.1109/LRA.2018.2789848
    [92]
    P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions with applications to multi-robot systems,” IEEE Control Syst. Lett., vol. 1, no. 2, pp. 310–315, Oct. 2017. doi: 10.1109/LCSYS.2017.2710943
    [93]
    J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Trans. Rob. Autom., vol. 20, no. 2, pp. 243–255, Apr. 2004. doi: 10.1109/TRA.2004.824698
    [94]
    G. Notomista and M. Egerstedt, “Constraint-driven coordinated control of multi-robot systems,” in Proc. American Control Conf., Philadelphia, USA, 2019, pp. 1990–1996.
    [95]
    L. Liu, P. Wang, B. Zhang, and W. Wei, “Coordinated control method of virtually coupled train formation based on multi agent system,” in Proc. 2nd Int. Conf. Smart Vehicular Technology, Transportation, Communication and Applications, Mount Emei, China, 2018, pp. 225–233.
    [96]
    T. Beckers, S. Hirche, and L. Colombo, “Safe online learning-based formation control of multi-agent systems with Gaussian processes,” arXiv preprint arXiv: 2104.00130, 2021.
    [97]
    B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” Int. J. Rob. Res., vol. 23, no. 9, pp. 939–954, Sept. 2004. doi: 10.1177/0278364904045564
    [98]
    S. Srinivasan and N. K. Jha, “Safety and reliability driven task allocation in distributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 3, pp. 238–251, Mar. 1999. doi: 10.1109/71.755824
    [99]
    Y. Emam, G. Notomista, P. Glotfelter, and M. Egerstedt, “Data-driven adaptive task allocation for heterogeneous multi-robot teams using robust control barrier functions,” in Proc. IEEE Int. Conf. Robotics and Automation, Xi’an, China, 2021, pp. 9124–9130.
    [100]
    D. Tihanyi, Y. M. Lu, O. Karaca, and M. Kamgarpour, “Multi-robot task allocation for safe planning against stochastic hazard dynamics,” arXiv preprint arXiv: 2103.01840, 2021.
    [101]
    R. Iden and S. A. Shappell, “A human error analysis of U.S. fatal highway crashes 1990–2004,” Proc. Human Factors Ergon. Soc. Annu. Meet., vol. 50, no. 17, pp. 2000–2003, Oct. 2006. doi: 10.1177/154193120605001761
    [102]
    K. C. Dey, L. Yan, X. J. Wang, Y. Wang, H. Y. Shen, M. Chowdhury, L. Yu, C. X. Qiu, and V. Soundararaj, “A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC),” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 491–509, Feb. 2015.
    [103]
    P. A. Ioannou and C. C. Chien, “Autonomous intelligent cruise control,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 657–672, Nov. 1993. doi: 10.1109/25.260745
    [104]
    A. Shaout and M. A. Jarrah, “Cruise control technology review,” Comput. Electr. Eng., vol. 23, no. 4, pp. 259–271, Jul. 1997. doi: 10.1016/S0045-7906(97)00013-X
    [105]
    S. E. Shladover, C. Nowakowski, X. Y. Lu, and R. Ferlis, “Cooperative adaptive cruise control: Definitions and operating concepts,” Transp. Res. Rec., vol. 2489, no. 1, pp. 145–152, Jan. 2015. doi: 10.3141/2489-17
    [106]
    J. Ploeg, A. F. A. Serrarens, and G. J. Heijenk, “Connect & drive: Design and evaluation of cooperative adaptive cruise control for congestion reduction,” J. Mod. Transp., vol. 19, no. 3, pp. 207–213, Sept. 2011. doi: 10.1007/BF03325760
    [107]
    S. E. Shladover, D. Y. Su, and X. Y. Lu, “Impacts of cooperative adaptive cruise control on freeway traffic flow,” Transp. Res. Rec., vol. 2324, no. 1, pp. 63–70, Jan. 2012. doi: 10.3141/2324-08
    [108]
    V. L. Bageshwar, W. L. Garrard, and R. Rajamani, “Model predictive control of transitional maneuvers for adaptive cruise control vehicles,” IEEE Trans. Veh. Technol., vol. 53, no. 5, pp. 1573–1585, Sept. 2004. doi: 10.1109/TVT.2004.833625
    [109]
    W. H. Chen, S. H. Tsai, and H. I. Lin, “Fault section estimation for power networks using logic cause-effect models,” IEEE Trans. Power Delivery, vol. 26, no. 2, pp. 963–971, Apr. 2011. doi: 10.1109/TPWRD.2010.2093585
    [110]
    A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014, pp. 6271–6278.
    [111]
    C. Y. Liang and H. Peng, “String stability analysis of adaptive cruise controlled vehicles,” JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf., vol. 43, no. 3, pp. 671–677, Sept. 2000.
    [112]
    K. Vogel, “A comparison of headway and time to collision as safety indicators,” Accid. Anal. Prev., vol. 35, no. 3, pp. 427–433, May 2003. doi: 10.1016/S0001-4575(02)00022-2
    [113]
    A. Benine-Neto, S. Scalzi, S. Mammar, and M. Netto, “Dynamic controller for lane keeping and obstacle avoidance assistance system,” in Proc. 13th Int. IEEE Conf. Intelligent Transportation Systems, Funchal, Portugal, 2010, pp. 1363–1368.
    [114]
    M. Oya and Q. Wang, “Adaptive lane keeping controller for four-wheel-steering vehicles,” in Proc. IEEE Int. Conf. Control and Automation, Guangzhou, China, 2007, pp. 1942–1947.
    [115]
    P. Raksincharoensak, M. Nagai, and M. Shino, “Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle,” Veh. Syst. Dyn., vol. 44, no. sup1, pp. 192–201, Jan. 2006. doi: 10.1080/00423110600870006
    [116]
    Y. Xu, B. Y. Chen, X. Shan, W. H. Jia, Z. F. Lu, and G. Xu, “Model predictive control for lane keeping system in autonomous vehicle,” in Proc. 7th Int. Conf. Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security, Hong Kong, China, 2017, pp. 1–5.
    [117]
    X. R. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness guarantees for the composition of lane keeping and adaptive cruise control,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1216–1229, Jul. 2018. doi: 10.1109/TASE.2017.2760863
    [118]
    X. R. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping and adaptive speed regulation on accessible mobile robot testbeds,” in Proc. IEEE Conf. Control Technology and Applications, Maui, USA, 2017, pp. 1769–1775.
    [119]
    W. S. Ng, B. L. Davies, R. D. Hibberd, and A. G. Timoney, “Robotic surgery,” IEEE Eng. Med. Biol. Mag., vol. 12, no. 1, pp. 120–125, Mar. 1993. doi: 10.1109/51.195948
    [120]
    M. Zhang, X. Y. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. SunSpiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for tensegrity robot locomotion,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, 2017, pp. 634–641.
    [121]
    D. B. Zhao, Y. R. Chen, and L. Lv, “Deep reinforcement learning with visual attention for vehicle classification,” IEEE Trans. Cognit. Dev. Syst., vol. 9, no. 4, pp. 356–367, Dec. 2017. doi: 10.1109/TCDS.2016.2614675
    [122]
    V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. doi: 10.1038/nature14236
    [123]
    E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp. 5026–5033.
    [124]
    O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y. Wang, T. Pfaff, Y. H. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in StarCraft II using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov. 2019. doi: 10.1038/s41586-019-1724-z
    [125]
    K. Sreenath, T. Lee, and V. Kumar, “Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load,” in Proc. 52nd IEEE Conf. Decision and Control, Firenze, Italy, 2013, pp. 2269–2274.
    [126]
    U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle control: A nonconvex approach for obstacle avoidance,” IEEE Trans. Control Syst. Technol., vol. 25, no. 2, pp. 469–484, Mar. 2017. doi: 10.1109/TCST.2016.2569468
    [127]
    I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957, Jul. 2005. doi: 10.1109/TAC.2005.851439
    [128]
    Y. X. Chen, E. H. Peng, and J. Grizzle, “Obstacle avoidance for low-speed autonomous vehicles with barrier function,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 194–206, Jan. 2018. doi: 10.1109/TCST.2017.2654063
    [129]
    Y. X. Chen, H. E. Peng, and J. W. Grizzle, “Validating noncooperative control designs through a Lyapunov approach,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 527–539, Mar. 2019. doi: 10.1109/TCST.2017.2783900
    [130]
    Y. X. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance for multi-robot operations with limited actuation: A control barrier function approach,” IEEE Control Syst. Lett., vol. 5, no. 1, pp. 127–132, Jan. 2021. doi: 10.1109/LCSYS.2020.3000748
    [131]
    M. Khan and A. Chatterjee, “Gaussian control barrier functions: Safe learning and control,” in Proc. 59th IEEE Conf. Decision and Control, Jeju, Korea (South), 2020, pp. 3316–3322.
    [132]
    V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, “Control barriers in Bayesian learning of system dynamics,” IEEE Trans. Autom. Control, DOI: 10.1109/TAC.2021.3137059

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1786) PDF downloads(826) Cited by()

    Highlights

    • Core findings: This survey provides a brief overview on the control problems of general nonlinear-affine control systems with the help of control Lyapunov function (CLF) and control barrier function (CBF). The control objectives are formulated as solving a constrained quadratic programming (QP) problem. Uncertainties are also considered in this paper, where the robustness of CLF-CBF-based QP is analyzed to study the effect of disturbances. The recent theoretical progress and novel applications of CLF and CBF are reviewed
    • Essence of the research: As two essential performances of control systems, stability and safety could be achieved by any controller satisfying CLF and CBF conditions, respectively. This survey combines the CLF and CBF with the QP optimization framework to obtain the optimal control protocol for general nonlinear-affine control systems, under which both stability and safety are ensured and the cost function gets its minimum value at the same time
    • Distinction of the paper: This survey reveals the contributions of CLF-CBF-based QP on the performances of nonlinear-affine control systems and reviews the recent theoretical progress and novel applications. Some interesting and challenging topics are proposed in this paper, which may be potential research directions in the future

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return