IEEE/CAA Journal of Automatica Sinica
Citation: | X. Y. Wang, J. Y. Ma, and J. J. Jiang, “Contrastive learning for blind super-resolution via a distortion-specific network,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 78–89, Jan. 2023. doi: 10.1109/JAS.2022.105914 |
[1] |
C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295–307, 2015.
|
[2] |
J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1646–1654.
|
[3] |
J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional network for image superresolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1637–1645.
|
[4] |
Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive residual network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3147–3155.
|
[5] |
B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2017, pp. 136–144.
|
[6] |
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2472–2481.
|
[7] |
Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image superresolution via information distillation network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 723–731.
|
[8] |
T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order attention network for single image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 11065–11074.
|
[9] |
N. Hao, H. Liao, Y. Qiu, and J. Yang, “Face super-resolution reconstruction and recognition using non-local similarity dictionary learning based algorithm,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 213–224, 2016. doi: 10.1109/JAS.2016.7451109
|
[10] |
L. Sun, Z. Liu, X. Sun, L. Liu, R. Lan, and X. Luo, “Lightweight image super-resolution via weighted multi-scale residual network,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1271–1280, 2021. doi: 10.1109/JAS.2021.1004009
|
[11] |
L. Geng, Z. Ji, Y. Yuan, and Y. Yin, “Fractional-order sparse representation for image denoising,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 555–563, 2017.
|
[12] |
J. Gu, H. Lu, W. Zuo, and C. Dong, “Blind super-resolution with iterative kernel correction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1604–1613.
|
[13] |
S. Bell-Kligler, A. Shocher, and M. Irani, “Blind super-resolution kernel estimation using an internal-GAN,” arXiv preprint arXiv: 1909.06581, 2019.
|
[14] |
Z. Luo, Y. Huang, S. Li, L. Wang, and T. Tan, “Unfolding the alternating optimization for blind super resolution,” arXiv preprint arXiv: 2010.02631, 2020.
|
[15] |
A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21, no. 12, pp. 4695–4708, 2012. doi: 10.1109/TIP.2012.2214050
|
[16] |
Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image superresolution using very deep residual channel attention networks,” in Proc. Europ. Conf. Comput. Vis., 2018, pp. 286–301.
|
[17] |
C. Ledig, L. Theis, F. Huszár, et al., “Photo-realistic single image super-resolution using a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4681–4690.
|
[18] |
X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “ESRGAN: Enhanced super-resolution generative adversarial networks,” in Proc. Europ. Conf. Comput. Vis. Workshop, 2018, pp. 1–16.
|
[19] |
R. Lan, L. Sun, Z. Liu, H. Lu, Z. Su, C. Pang, and X. Luo, “Cascading and enhanced residual networks for accurate single-image superresolution,” IEEE Trans. Cybern., vol. 51, no. 1, pp. 115–125, 2021. doi: 10.1109/TCYB.2019.2952710
|
[20] |
R. Lan, L. Sun, Z. Liu, H. Lu, C. Pang, and X. Luo, “MADNet: A fast and lightweight network for single-image super resolution,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1443–1453, 2021. doi: 10.1109/TCYB.2020.2970104
|
[21] |
T. Köhler, M. Bätz, F. Naderi, A. Kaup, A. Maier, and C. Riess, “Toward bridging the simulated-to-real GAP: Benchmarking super-resolution on real data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 11, pp. 2944–2959, 2019.
|
[22] |
K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional super-resolution network for multiple degradations,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3262–3271.
|
[23] |
A. Shocher, N. Cohen, and M. Irani, “Zero-shot” super-resolution using deep internal learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3118–3126.
|
[24] |
J. W. Soh, S. Cho, and N. I. Cho, “Meta-transfer learning for zero-shot super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3516–3525.
|
[25] |
K. Zhang, L. V. Gool, and R. Timofte, “Deep unfolding network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3217–3226.
|
[26] |
S. A. Hussein, T. Tirer, and R. Giryes, “Correction filter for single image super-resolution: Robustifying off-the-shelf deep super-resolvers,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1428–1437.
|
[27] |
Y. Zhou, X. Du, M. Wang, S. Huo, Y. Zhang, and S.-Y. Kung, “Crossscale residual network: A general framework for image super-resolution, denoising, and deblocking,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 5855–5867, 2022. doi: 10.1109/TCYB.2020.3044374
|
[28] |
T. Michaeli and M. Irani, “Nonparametric blind super-resolution,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 945–952.
|
[29] |
J. Liang, K. Zhang, S. Gu, L. Van Gool, and R. Timofte, “Flow-based kernel prior with application to blind super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021, pp. 10601–10610.
|
[30] |
L. Wang, Y. Wang, X. Dong, Q. Xu, J. Yang, W. An, and Y. Guo, “Unsupervised degradation representation learning for blind super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021, pp. 10581–10590.
|
[31] |
D. L. Ruderman, “The statistics of natural images,” Network: Computation in Neural Systems, vol. 5, no. 4, p. 517, 1994. doi: 10.1088/0954-898X_5_4_006
|
[32] |
A. Srivastava, A. B. Lee, E. Simoncelli, and S.-C. Zhu, “On advances in statistical modeling of natural images,” J. Mathematical Imaging and Vision, vol. 18, no. 1, pp. 17–33, 2003. doi: 10.1023/A:1021889010444
|
[33] |
W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video superresolution using an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1874–1883.
|
[34] |
W. Wang, T. Zhou, F. Yu, J. Dai, E. Konukoglu, and L. Van Gool, “Exploring cross-image pixel contrast for semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 7303–7313.
|
[35] |
T. Zhou, W. Wang, E. Konukoglu, and L. Van Gool, “Rethinking semantic segmentation: A prototype view,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 2582–2593.
|
[36] |
E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset and study,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2017, pp. 126–135.
|
[37] |
R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang, “Ntire 2017 challenge on single image super-resolution: Methods and results,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2017, pp. 114–125.
|
[38] |
M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel, “Low-complexity single-image super-resolution based on nonnegative neighbor embedding,” in Proc. British Mach. Vis. Conf., 2012, pp. 1–10.
|
[39] |
R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” in Proc. Int. Conf. Curves and Surfaces, 2010, pp. 711–730.
|
[40] |
D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proc. IEEE Int. Conf. Comput. Vis., 2001, pp. 416–423.
|
[41] |
J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-exemplars,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 5197–5206.
|
[42] |
Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa, “Sketch-based MANGA retrieval using MANGA109 dataset,” Multimed. Tools Appl., vol. 76, no. 20, pp. 21811–21838, 2017. doi: 10.1007/s11042-016-4020-z
|
[43] |
K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017. doi: 10.1109/TIP.2017.2662206
|
[44] |
G. Chen, F. Zhu, and P. Ann Heng, “An efficient statistical method for image noise level estimation,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 477–485.
|