IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Liu, B. Jiang, and J. M. Xu, “Axial assembled correspondence network for few-shot semantic segmentation,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 711–721, Mar. 2023. doi: 10.1109/JAS.2022.105863 |
[1] |
J. M. Xu and Y. Liu, “Multiple guidance network for industrial product surface inspection with one labeled target sample,” IEEE Trans. Neural Netw. Learn. Syst., 2022, DOI: 10.1109/TNNLS.2022.3165575.
|
[2] |
I. Ahmed, S. Din, G. Jeon, F. Piccialli, and G. Fortino, “Towards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1253–1270, Jul. 2021. doi: 10.1109/JAS.2020.1003453
|
[3] |
Y. Liu, J. M. Xu, and Y. L. Wu, “A CISG method for internal defect detection of solar cells in different production processes,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8452–8462, Aug. 2022. doi: 10.1109/TIE.2021.3104584
|
[4] |
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018. doi: 10.1109/TPAMI.2017.2699184
|
[5] |
E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, Apr. 2017. doi: 10.1109/TPAMI.2016.2572683
|
[6] |
J. H. Dong, Y. Cong, G. Sun, B. N. Zhong, and X. W. Xu, “What can be transferred: Unsupervised domain adaptation for endoscopic lesions segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 4022–4031.
|
[7] |
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 770–778.
|
[8] |
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 2261–2269.
|
[9] |
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li, “ImageNet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 248–255.
|
[10] |
S. D. Li, K. Han, T. W. Costain, H. Howard-Jenkins, and V. Prisacariu, “Correspondence networks with adaptive neighbourhood consensus,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 10193–10202.
|
[11] |
C. B. Choy, J. Y. Gwak, S. Savarese, and M. Chandraker, “Universal correspondence network,” in Proc. 30th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 2414–2422.
|
[12] |
K. Han, R. S. Rezende, B. Ham, K. Y. K. Wong, M. Cho, C. Schmid, and J. Ponce, “SCNet: Learning semantic correspondence”, in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 1849–1858.
|
[13] |
I. Rocco, M. Cimpoi, R. Arandjelovicć, A. Torii, T. Pajdla, and J. Sivic, “Neighbourhood consensus networks,” in Proc. 32nd Int. Conf. Neural Information Processing Systems, Montréal, Canada, 2018, pp. 1658–1669.
|
[14] |
J. Long, N. Zhang, and T. Darrell, “Do convnets learn correspondence?” in Proc. 28th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 1601–1609.
|
[15] |
Y. B. Liu, L. C. Zhu, M. Yamada, and Y. Yang, “Semantic correspondence as an optimal transport problem,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 4462–4471.
|
[16] |
G. S. Yang and D. Ramanan, “Volumetric correspondence networks for optical flow,” in Proc. 33rd Int. Conf. Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 794–805.
|
[17] |
J. Min, D. Kang, and M. Cho, “Hypercorrelation squeeze for few-shot segmenation,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Montréal, Canada, 2021, pp. 6921–6932.
|
[18] |
A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot learning for semantic segmentation,” in Proc. British Machine Vision Conf., London, UK, 2017, pp. 1–9.
|
[19] |
K. Nguyen and S. Todorovic, “Feature weighting and boosting for few-shot segmentation,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea (South), 2019, pp. 622–631.
|
[20] |
H. S. Zhao, J. P. Shi, X. J. Qi, X. G. Wang, and J. Y. Jia, “Pyramid scene parsing network,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 6230–6239.
|
[21] |
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. 18th Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015, pp. 234–241.
|
[22] |
Y. F. Xia, H. Yu, and F.-Y. Wang, “Accurate and robust eye center localization via fully convolutional networks,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1127–1138, Sept. 2019. doi: 10.1109/JAS.2019.1911684
|
[23] |
K. H. Liu, Z. H. Ye, H. Y. Guo, D. P. Cao, L. Chen, and F.-Y. Wang, “FISS GAN: A generative adversarial network for foggy image semantic segmentation,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1428–1439, Aug. 2021. doi: 10.1109/JAS.2021.1004057
|
[24] |
O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching networks for one shot learning,” in Proc. 30th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 3637–3645.
|
[25] |
J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-shot learning,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 4080–4090.
|
[26] |
C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 1126–1135.
|
[27] |
Q. Cai, Y. W. Pan, T. Yao, C. G. Yan, and T. Mei, “Memory matching networks for one-shot image recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 4080–4088.
|
[28] |
X. L. Zhang, Y. C. Wei, Y. Yang, and T. S. Huang, “SG-One: Similarity guidance network for one-shot semantic segmentation,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3855–3865, Sept. 2020. doi: 10.1109/TCYB.2020.2992433
|
[29] |
K. X. Wang, J. H. Liew, Y. T. Zou, D. Q. Zhou, and J. S. Feng, “PANet: Few-shot image semantic segmentation with prototype alignment,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea (South), 2019, pp. 9196–9205.
|
[30] |
C. Zhang, G. S. Lin, F. Y. Liu, R. Yao, and C. H. Shen, “CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 5212–5221.
|
[31] |
Z. T. Tian, H. S. Zhao, M. Shu, Z. C. Yang, R. Y. Li, and J. Y. Jia, “Prior guided feature enrichment network for few-shot segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 2, pp. 1050–1065, Feb. 2022. doi: 10.1109/TPAMI.2020.3013717
|
[32] |
W. Liu, A. Rabinovich, and A. C. Berg, “ParseNet: Looking wider to see better,” arXiv preprint arXiv: 1506.04579, 2015.
|
[33] |
H. C. Wang, X. D. Zhang, Y. T. Hu, Y. D. Yang, X. B. Cao, and X. T. Zhen, “Few-shot semantic segmentation with democratic attention networks,” in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 730–746.
|
[34] |
C. Zhang, G. S. Lin, F. Y. Liu, J. S. Guo, Q. Y. Wu, and R. Yao, “Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea (South), 2019, pp. 9586–9594.
|
[35] |
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004. doi: 10.1023/B:VISI.0000029664.99615.94
|
[36] |
N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, USA, 2005, pp. 886–893.
|
[37] |
S. Kim, D. Min, B. Ham, S. Lin, and K. Sohn, “FCSS: Fully convolutional self-similarity for dense semantic correspondence,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 3, pp. 581–595, Mar. 2019. doi: 10.1109/TPAMI.2018.2803169
|
[38] |
Y. X. Wu and K. M. He, “Group normalization,” Int. J. Comput. Vis., vol. 128, no. 3, pp. 742–755, Mar. 2020. doi: 10.1007/s11263-019-01198-w
|
[39] |
M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL visual object classes challenge: A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, Jan. 2015. doi: 10.1007/s11263-014-0733-5
|
[40] |
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection and segmentation,” in Proc. 13th European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 297–312.
|
[41] |
X. Li, T. H. Wei, Y. P. Chen, Y. W. Tai, and C. K. Tang, “FSS-1000: A 1000-class dataset for few-shot segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 2866–2875.
|
[42] |
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int. Conf. Learning Representations, San Diego, USA, 2015.
|
[43] |
K. Rakelly, E. Shelhamer, T. Darrell, A. A. Efros, and S. Levine, “Conditional networks for few-shot semantic segmentation,” in Proc. 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018.
|
[44] |
G. Li, V. Jampani, L. Sevilla-Lara, D. Q. Sun, J. Kim, and J. Kim, “Adaptive prototype learning and allocation for few-shot segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Nashville, USA, 2021, pp. 8330–8339.
|
[45] |
M. Boudiaf, H. Kervadec, Z. I. Masud, P. Piantanida, I. B. Ayed, and J. Dolz, “Few-shot segmentation without meta-learning: A good transductive inference is all you need?” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Nashville, USA, 2021, pp. 13974–13983.
|
[46] |
T. Hu, P. W. Yang, C. L. Zhang, G. Yu, Y. D. Mu, and C. G. M. Snoek, “Attention-based multi-context guiding for few-shot semantic segmentation,” in Proc. Proc. 33rd AAAI Conf. Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conf. and 9th AAAI Symp. Educational Advances in Artificial Intelligence, Honolulu, USA, 2019, pp. 8441–8448.
|
[47] |
Y. F. Liu, X. Y. Zhang, S. Y. Zhang, and X. M. He, “Part-aware prototype network for few-shot semantic segmentation,” in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 142–158.
|
[48] |
B. Y. Yang, C. Liu, B. H. Li, J. B. Jiao, and Q. X. Ye, “Prototype mixture models for few-shot semantic segmentation,” in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 763–778.
|
[49] |
T. Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proc. 13th European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 740–755.
|
[50] |
K. Rakelly, E. Shelhamer, T. Darrell, A. A. Efros, and S. Levine, “Few-shot segmentation propagation with guided networks,” arXiv preprint arXiv: 1806.07373, 2018.
|
[51] |
R. Azad, A. R. Fayjie, C. Kauffmann, I. B. Ayed, M. Pedersoli, and J. Dolz, “On the texture bias for few-shot CNN segmentation,” in Proc. IEEE Winter Conf. Applications of Computer Vision, Waikoloa, USA, 2021, pp. 2673–2682.
|