IEEE/CAA Journal of Automatica Sinica
Citation: | X. Li, H. B. Duan, Y. L. Tian, and F.-Y. Wang, “Exploring image generation for UAV change detection,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1061–1072, Jun. 2022. doi: 10.1109/JAS.2022.105629 |
[1] |
Y. Z. Liu, Z. Y. Meng, Y. Zou, and M. Cao, “Visual object tracking and servoing control of a nano-scale quadrotor: System, algorithms, and experiments,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 344–360, Feb. 2021. doi: 10.1109/JAS.2020.1003530
|
[2] |
R. B. Zhang, P. Tang, Y. M. Su, X. Y. Li, G. Yang, and C. T. Shi, “An adaptive obstacle avoidance algorithm for unmanned surface vehicle in complicated marine environments,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4, pp. 385–396, Oct. 2014. doi: 10.1109/JAS.2014.7004666
|
[3] |
M. Puhm, J. Deutscher, M. Hirschmugl, A. Wimmer, U. Schmitt, and M. Schardt, “A near real-time method for forest change detection based on a structural time series model and the kalman filter,” Remote Sens., vol. 12, no. 19, Sept. 2020.
|
[4] |
X. B. Gao, E. Akyol, and T. Basar, “Communication scheduling and remote estimation with adversarial intervention,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 32–44, Jan. 2019. doi: 10.1109/JAS.2019.1911318
|
[5] |
T. S. F. Haines and T. Xiang, “Background subtraction with DirichletProcess mixture models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 670–683, Apr. 2014. doi: 10.1109/TPAMI.2013.239
|
[6] |
M. Narayana, A. Hanson, and E. G. Learned-Miller, “Background subtraction: Separating the modeling and the inference,” Mach. Vision Appl., vol. 25, no. 5, pp. 1163–1174, Jul. 2014. doi: 10.1007/s00138-013-0569-y
|
[7] |
X. W. Zhou, C. Yang, and W. C. Yu, “Moving object detection by detecting contiguous outliers in the low-rank representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 597–610, Mar. 2013.
|
[8] |
A. R. Rivera, M. Murshed, J. Kim, and O. Chae, “Background modeling through statistical edge-segment distributions,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 8, pp. 1375–1387, Aug. 2013. doi: 10.1109/TCSVT.2013.2242551
|
[9] |
S. C. Liao, G. Y. Zhao, V. Kellokumpu, M. Pietikäinen, and S. Z. Li, “Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes,” in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Francisco, USA, 2010, pp. 1301−1306.
|
[10] |
M. Braham and M. Van Droogenbroeck, “Deep background subtraction with scene-specific convolutional neural networks,” in Proc. Int. Conf. Systems, Signals and Image Processing, Bratislava, Slovakia, 2016, pp. 1−4.
|
[11] |
M. Babaee, D. T. Dinh, and G. Rigoll, “A deep convolutional neural network for video sequence background subtraction,” Pattern Recognit., vol. 76, pp. 635–649, Apr. 2018. doi: 10.1016/j.patcog.2017.09.040
|
[12] |
A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-object tracking analysis,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 4340−4349.
|
[13] |
G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 3234−3243.
|
[14] |
M. A. Lebedev, Y. V. Vizilter, O. V. Vygolov, V. A. Knyaz, and A. Y. Rubis, “Change detection in remote sensing images using conditional adversarial networks,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLⅡ-2, pp. 565–571, May 2018.
|
[15] |
X. D. Niu, M. G. Gong, T. Zhan, and Y. L. Yang, “A conditional adversarial network for change detection in heterogeneous images,” IEEE Geosci. Remote. Sens. Lett., vol. 16, no. 1, pp. 45–49, Jan. 2019. doi: 10.1109/LGRS.2018.2868704
|
[16] |
X. H. Li, Z. S. Du, Y. Y. Huang, and Z. Y. Tan, “A deep translation (GAN) based change detection network for optical and SAR remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 179, pp. 14–34, Sept. 2021. doi: 10.1016/j.isprsjprs.2021.07.007
|
[17] |
Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, “Comparative study of background subtraction algorithms,” J. Electron. Imaging, vol. 19, no. 3, Jul. 2010.
|
[18] |
C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 747–757, Aug. 2000. doi: 10.1109/34.868677
|
[19] |
A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” Proc. IEEE, vol. 90, no. 7, pp. 1151–1163, Jul. 2002. doi: 10.1109/JPROC.2002.801448
|
[20] |
D. Mukherjee, Q. M. J. Wu, and T. M. Nguyen, “Multiresolution based Gaussian mixture model for background suppression,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 5022–5035, Dec. 2013. doi: 10.1109/TIP.2013.2281423
|
[21] |
R. H. Evangelio, M. Patzold, I. Keller, and T. Sikora, “Adaptively splitted GMM with feedback improvement for the task of background subtraction,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 5, pp. 863–874, May 2014. doi: 10.1109/TIFS.2014.2313919
|
[22] |
O. Barnich and M. Van Droogenbroeck, “ViBe: A universal background subtraction algorithm for video sequences,” IEEE Trans. Image Process., vol. 20, no. 6, pp. 1709–1724, Jun. 2011. doi: 10.1109/TIP.2010.2101613
|
[23] |
K. F. Wang, Y. Q. Liu, C. Gou, and F.-Y. Wang, “A multi-view learning approach to foreground detection for traffic surveillance applications,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4144–4158, Jun. 2016. doi: 10.1109/TVT.2015.2509465
|
[24] |
K. Wang, C. Gou, and F.-Y. Wang, “M4CD: A robust change detection method for intelligent visual surveillance,” IEEE Access, vol. 6, pp. 15505–15520, Mar. 2018. doi: 10.1109/ACCESS.2018.2812880
|
[25] |
P. L. St-Charles and G. A. Bilodeau, “Improving background subtraction using local binary similarity pattern,” in Proc. IEEE Winter Conf. Applications of Computer Vision, Steamboat Springs, USA, 2014, pp. 509−515.
|
[26] |
L. St-Charles, G. A. Bilodeau, and R. Bergevin, “SuBSENSE: A universal change detection method with local adaptive sensitivity,” IEEE Trans. Image Process., vol. 24, no. 1, pp. 359–373, Jan. 2015. doi: 10.1109/TIP.2014.2378053
|
[27] |
L. A. Lim and H. Y. Keles, “Foreground segmentation using convolutional neural networks for multiscale feature encoding,” Pattern Recognit. Lett., vol. 112, pp. 256–262, Sept. 2018. doi: 10.1016/j.patrec.2018.08.002
|
[28] |
L. A. Lim and H. Y. Keles, “Learning multi-scale features for foreground segmentation,” Pattern Anal. Appl., vol. 23, no. 3, pp. 1369–1380, Aug. 2020. doi: 10.1007/s10044-019-00845-9
|
[29] |
Y. L. Tian, X. Li, K. F. Wang, and F.-Y. Wang, “Training and testing object detectors with virtual images,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 539–546, Mar. 2018. doi: 10.1109/JAS.2017.7510841
|
[30] |
D. P. Young and J. M. Ferryman, “PETS metrics: On-line performance evaluation service,” in Proc. IEEE Int. Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Beijing, China, 2005, pp. 317−324.
|
[31] |
L. Y. Li, W. M. Huang, I. Y. H. Gu, and Q. Tian, “Statistical modeling of complex backgrounds for foreground object detection,” IEEE Trans. Image Process., vol. 13, no. 11, pp. 1459–1472, Nov. 2004. doi: 10.1109/TIP.2004.836169
|
[32] |
N. Goyette, M. Jodoin, F. Porikli, J. Konrad, and Ishwar, “A novel video dataset for change detection benchmarking,” IEEE Trans. Image Process., vol. 23, no. 11, pp. 4663–4679, Nov. 2014. doi: 10.1109/TIP.2014.2346013
|
[33] |
F. Tiburzi, M. Escudero, J. Bescós, and J. M. Martinez, “A ground truth for motion-based video-object segmentation,” in Proc. IEEE Int. Conf. Image Processing, San Diego, USA, 2008, pp. 17−20.
|
[34] |
S. Brutzer, B. Höferlin, and G. Heidemann, “Evaluation of background subtraction techniques for video surveillance,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 1937−1944.
|
[35] |
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672−2680.
|
[36] |
C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” J. Big Data, vol. 6, no. 1, Jul. 2019.
|
[37] |
M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data augmentation using GAN for improved liver lesion classification,” in Proc. IEEE 15th Int. Symp. Biomedical Imaging, Washington, USA, 2018, pp. 289−293.
|
[38] |
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 2242−2251.
|
[39] |
C. Gou, H. Zhang, K. F. Wang, F.-Y. Wang, and Q. Ji, “Cascade learning from adversarial synthetic images for accurate pupil detection,” Pattern Recognit., vol. 88, pp. 584–594, Apr. 2019. doi: 10.1016/j.patcog.2018.12.014
|
[40] |
X. Li, K. F. Wang, Y. L. Tian, L. Yan, F. Deng, and F.-Y. Wang, “The ParallelEye dataset: A large collection of virtual images for traffic vision research,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 6, pp. 2072–2084, Jun. 2019. doi: 10.1109/TITS.2018.2857566
|
[41] |
X. Li, Y. T. Wang, L. Yan, K. F. Wang, F. Deng, and F.-Y. Wang, “ParallelEye-CS: A new dataset of synthetic images for testing the visual intelligence of intelligent vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9619–9631, Oct. 2019. doi: 10.1109/TVT.2019.2936227
|
[42] |
A. Kundu, Y. Li, F. Dellaert, F. X. Li, and J. M. Rehg, “Joint semantic segmentation and 3D reconstruction from monocular video,” in Proc. 13th European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 703−718.
|
[43] |
G. Rahmon, F. Bunyak, G. Seetharaman, and K. Palaniappan, “Motion U-Net: Multi-cue encoder-decoder network for motion segmentation,” in Proc. 25th Int. Conf. Pattern Recognition, Milan, Italy, 2021, pp. 8125−8132.
|
[44] |
F.-Y. Wang and H. Mo, “Some fundamental issues on type-2 fuzzy sets,” Acta Autom. Sinica, vol. 43, no. 7, pp. 1114–1141, Jul. 2017.
|
[45] |
H. Mo, F.-Y. Wang, M. Zhou, R. M. Li, and Z. Q. Xiao, “Footprint of uncertainty for type-2 fuzzy sets,” Inf. Sci., vol. 272, pp. 96–110, Jul. 2014. doi: 10.1016/j.ins.2014.02.092
|