IEEE/CAA Journal of Automatica Sinica
Citation: | L. Ding, J. Li, M. Ye, and Y. Zhao, “Fully distributed resilient cooperative control of vehicular platoon systems under DoS attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 937–940, May 2022. doi: 10.1109/JAS.2022.105578 |
[1] |
D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-based vehicular cyber-physical systems,” IEEE Commun. Surveys Tutor., vol. 18, no. 1, pp. 263–284, 2016. doi: 10.1109/COMST.2015.2410831
|
[2] |
G. Guo and W. Yue, “Sampled-data cooperative adaptive cruise control of vehicles with sensor failures,” IEEE Trans. Intel. Transp. Syst., vol. 15, no. 6, pp. 2404–2418, 2014. doi: 10.1109/TITS.2014.2316016
|
[3] |
S. E. Li, Y. Zheng, K. Li, Y. Wu, J. K. Hedrick, F. Gao, and H. Zhang, “Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities,” IEEE Intell. Transp. Syst. Mag., vol. 9, no. 3, pp. 46–58, 2017. doi: 10.1109/MITS.2017.2709781
|
[4] |
F. Gao, X. Hu, S. E. Li, K. Li, and Q. Sun, “Distributed adaptive sliding mode control of vehicular platoon with uncertain interaction topology,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6352–6361, 2018. doi: 10.1109/TIE.2017.2787574
|
[5] |
F. Ma, J. Wang, S. Zhu, S. Y. Gelbal, Y. Yang, B. Aksun-Guvenc, and L. Guvenc, “Distributed control of cooperative vehicular platoon with nonideal communication condition,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 8207–8220, 2020. doi: 10.1109/TVT.2020.2997767
|
[6] |
X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, 2022. doi: 10.1109/JAS.2021.1004269
|
[7] |
G. Wu, G. Chen, H. Zhang, and C. Huang, “Fully distributed event-triggered vehicular platooning with actuator uncertainties,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 6601–6612, 2021.
|
[8] |
Q. Zhu and T. Basar, “Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: Games-in-games principle for optimal cross-layer resilient control systems,” IEEE Control Syst. Mag., vol. 35, no. 1, pp. 46–65, 2015. doi: 10.1109/MCS.2014.2364710
|
[9] |
D. Ding, Q.-L. Han, Y. Xiang, X. Ge, and X.-M. Zhang, “A survey on security control and attack detection for industrial cyber-physical systems,” Neurocomput., vol. 275, pp. 1674–1683, 2018. doi: 10.1016/j.neucom.2017.10.009
|
[10] |
F. Sakiz and S. Sen, “A survey of attacks and detection mechanisms on intelligent transportation systems: Vanets and IoV,” Ad Hoc Netw., vol. 61, pp. 33–50, 2017. doi: 10.1016/j.adhoc.2017.03.006
|
[11] |
M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M. Zhang, J. Rowe, and K. Levitt, “Security vulnerabilities of connected vehicle streams and their impact on cooperative driving,” IEEE Commun. Mag., vol. 53, no. 6, pp. 126–132, 2015. doi: 10.1109/MCOM.2015.7120028
|
[12] |
R. Merco, F. Ferrante, and Pisu, “A hybrid controller for DoS-resilient string-stable vehicle platoons,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1697–1707, 2020.
|
[13] |
Z. A. Biron, S. Dey, and Pisu, “Real-time detection and estimation of denial of service attack in connected vehicle systems,” IEEE Trans. Intell. Transp. Syst, vol. 19, no. 12, pp. 3893–3902, 2018. doi: 10.1109/TITS.2018.2791484
|
[14] |
S. Xiao, X. Ge, Q.-L. Han, and Y. Zhang, “Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks,” IEEE Trans. Cybern., 2021.
|
[15] |
Y. Zhao, Z. Liu, and W. S. Wong, “Resilient platoon control of vehicular cyber physical systems under DoS attacks and multiple disturbances,” IEEE Trans. Intell. Transp. Syst., 2021.
|