IEEE/CAA Journal of Automatica Sinica
Citation: | K. Shao and J. C. Zheng, “Predefined-time sliding mode control with prescribed convergent region,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 934–936, May 2022. doi: 10.1109/JAS.2022.105575 |
[1] |
Y.-J. Huang, T.-C. Kuo, and S.-H. Chang, “Adaptive sliding-mode control for nonlinear systems with uncertain parameters,” IEEE Trans. Syst. Man Cybern. B,Cybern., vol. 38, no. 2, pp. 534–539, 2008. doi: 10.1109/TSMCB.2007.910740
|
[2] |
F. Plestan, Y. Shtessel, V. Brégeault, and A. Poznyak, “New methodologies for adaptive sliding mode control,” Int. J. Control, vol. 83, no. 9, pp. 1907–1919, 2010. doi: 10.1080/00207179.2010.501385
|
[3] |
K. Shao, R. Tang, F. Xu, X. Wang, and J. Zheng, “Adaptive sliding mode control for uncertain Euler-Lagrange systems with input saturation,” J. Franklin Institute, vol. 358, no. 16, pp. 8356–8376, 2021. doi: 10.1016/j.jfranklin.2021.08.027
|
[4] |
K. Shao, J. Zheng, H. Wang, X. Wang, R. Lu, and Z. Man, “Tracking control of a linear motor positioner based on barrier function adaptive sliding mode,” IEEE Trans. Ind. Informat., vol. 17, no. 11, pp. 7479–7488, 2021. doi: 10.1109/TII.2021.3057832
|
[5] |
C.-S. Chiu, “Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems,” Automatica, vol. 48, no. 2, pp. 316–326, 2012. doi: 10.1016/j.automatica.2011.08.055
|
[6] |
K. Shao, “Nested adaptive integral terminal sliding mode control for high-order uncertain nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 31, pp. 6668–6680, 2021. doi: 10.1002/rnc.5631
|
[7] |
D. Qian, H. Ding, S. G. Lee, and H. Bae, “Suppression of chaotic behaviors in a complex biological system by disturbance observer-based derivative-integral terminal sliding mode,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 126–135, 2020. doi: 10.1109/JAS.2019.1911834
|
[8] |
Z. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, 2020. doi: 10.1109/JAS.2020.1003057
|
[9] |
R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. Sánchez-Torres, and M. Defoort, “Enhancing the settling time estimation of a class of fixed-time stable systems,” Int. J. Robust Nonlinear Control, vol. 29, pp. 4135–4148, 2019. doi: 10.1002/rnc.4600
|
[10] |
C.-D. Liang, M.-F. Ge, Z.-W. Liu, G. Ling, and X.-W. Zhao, “A novel sliding surface design for predefined-time stabilization of Euler-Lagrange systems,” Nonlinear Dynamics, vol. 106, pp. 445–458, 2021. doi: 10.1007/s11071-021-06826-0
|
[11] |
J. D. Sánchez-Torres, A. J. Munñoz-Vázquez, M. Defoort, E. Jiménez-Rodríguez, and A. G. Loukianov, “A class of predefined-time controllersfor uncertain second-order systems,” European J. Control, vol. 53, pp. 52–58, 2019.
|
[12] |
Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time,” Automatica, vol. 83, pp. 243–251, 2017. doi: 10.1016/j.automatica.2017.06.008
|
[13] |
P. Krishnamurthy, F. Khorrami, and M. Krstic, “A dynamic high-gain design for prescribed-time regulation of nonlinear systems,” Automatica, vol. 115, no. 108860, 2020. doi: 10.1016/j.automatica.2020.108860
|
[14] |
A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2011.
|
[15] |
E. Jiménez-Rodríguez, A. J. Muoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, and A. G. Loukianov, “A Lyapunov-like characterization ofpredefined-time stability,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4922–4927, 2020. doi: 10.1109/TAC.2020.2967555
|