IEEE/CAA Journal of Automatica Sinica
Citation: | W. C. Huang, H. L. Liu, and J. Huang, “Distributed robust containment control of linear heterogeneous multi-agent systems: An output regulation approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 864–877, May 2022. doi: 10.1109/JAS.2022.105560 |
[1] |
G. A. Kaminka, R. Schechter-Glick, and V. Sadov, “Using sensor morphology for multirobot formations,” IEEE Trans. Robotics, vol. 24, no. 2, pp. 271–282, 2008. doi: 10.1109/TRO.2008.918054
|
[2] |
P. Hernandez-Leon, J. Dvila, S. Salazar, and X. Ping, “Distance-based formation maneuvering of non-holonomic wheeled mobile robot multi-agent system,” IFAC Proceedings Volumes, vol. 53, no. 2, pp. 5665–5670, 2020.
|
[3] |
B. Alberto, V. G. Gabriel, D. P. Juan, L. Alvaro, and B. Javier, “Combination of multi-agent systems and wireless sensor networks for the monitoring of cattle,” Sensors, vol. 18, no. 2, pp. 108–124, 2018. doi: 10.3390/s18010108
|
[4] |
S. Wang, W. Yang, and H. Shi, “Consensus-based filtering algorithm with packet-dropping,” Acta Automatica Sinica, vol. 36, no. 12, pp. 1689–1696, 2010.
|
[5] |
Y. Su and J. Huang, “Cooperative output regulation of linear multi-agent systems,” IEEE Trans. Automatic Control, vol. 57, no. 4, pp. 1062–1066, 2012. doi: 10.1109/TAC.2011.2169618
|
[6] |
X. Wang, Y. Hong, J. Huang, and Z. Jiang, “A distributed control approach to a robust output regulation problem for multi-agent linear systems,” IEEE Trans. Automatic Control, vol. 55, no. 12, pp. 2891–2895, 2010. doi: 10.1109/TAC.2010.2076250
|
[7] |
X. Liu, Y. Xie, F. Li, P. Shi, W. Gui, and W. Li, “Formation control of singular multi-agent systems with switching topologies,” Int. Journal of Robust and Nonlinear Control, vol. 2, no. 30, pp. 1–13, 2020.
|
[8] |
H. Liu, G. Xie, and L. Wang, “Necessary and sufficient conditions for containment control of networked multi-agent systems,” Automatica, vol. 48, no. 7, pp. 1415–1422, 2012. doi: 10.1016/j.automatica.2012.05.010
|
[9] |
A. T. Koru, S. B. Sarsilmaz, Selahattin, T. Yucelen, and E. N. Johnson, “Cooperative output regulation of heterogeneous multi-agent systems: A global distributed control synthesis approach,” IEEE Trans. Automatic Control, vol. 66, no. 9, pp. 4289–4296, 2021. doi: 10.1109/tac.2020.3032496
|
[10] |
T. Liu, J. Qi, and Z. Jiang, “Distributed containment control of multi-agent systems with velocity and acceleration saturations,” Automatica, vol. 117, pp. 1–10, 2020.
|
[11] |
J. Qin, Q. Ma, X. Yu, and Y. Kang, “Output containment control for heterogeneous linear multi-agent systems with fixed and switching topologies,” IEEE Trans. Cybernetics, vol. 49, no. 12, pp. 4117–4128, 2019. doi: 10.1109/TCYB.2018.2859159
|
[12] |
H. Haghshenas, M. A. Badamchizadeh, and M. Baradarannia, “Containment control of heterogeneous linear multi-agent systems,” Automatica, vol. 54, pp. 210–216, 2015. doi: 10.1016/j.automatica.2015.02.002
|
[13] |
H. Chu, L. Gao, and W. Zhang, “Distributed adaptive containment control of heterogeneous linear multi-agent systems: An output regulation approach,” IET Control Theory and Applications, vol. 10, no. 1, pp. 95–102, 2016. doi: 10.1049/iet-cta.2015.0398
|
[14] |
W. Wang, S. Tong, and D. Wang, “Adaptive fuzzy containment control of nonlinear systems with unmeasurable states,” IEEE Trans. Cybernetics, vol. 49, no. 3, pp. 961–973, 2019. doi: 10.1109/TCYB.2018.2789917
|
[15] |
Y. Cao, W. Ren, and M. Egerstedt, “Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks,” Automatica, vol. 48, no. 8, pp. 1586–1597, 2012. doi: 10.1016/j.automatica.2012.05.071
|
[16] |
J. Shao, L. Shi, M. Cao, and H. Xia, “Distributed containment control for asynchronous discrete-time second-order multi-agent systems with switching topologies,” Applied Mathematics &Computation, vol. 336, pp. 47–59, 2018.
|
[17] |
K. Chen, J. Wang, Y. Zhang, and Z. Liu, “Consensus of second-order nonlinear multi-agent systems under state-controlled switching topology,” Nonlinear Dynamics, vol. 81, no. 4, pp. 1871–1878, 2015. doi: 10.1007/s11071-015-2112-3
|
[18] |
P. Wang and Y. Jia, “Distributed containment control of second-order multi-agent systems with inherent non-linear dynamics,” IET Control Theory and Applications, vol. 8, no. 4, pp. 277–287, 2014. doi: 10.1049/iet-cta.2013.0686
|
[19] |
F. Wang, Z. Liu, Z. Chen, and S. Wang, “Containment control for second-order nonlinear multi-agent systems with intermittent communications,” Int. Journal of Systems Science, vol. 50, no. 5, pp. 919–934, 2019. doi: 10.1080/00207721.2019.1585997
|
[20] |
T. Li, Z. Li, S. Fei, and Z. Ding, “Second-order event-triggered adaptive containment control for a class of multi-agent systems,” ISA Transactions, vol. 96, pp. 132–142, 2020. doi: 10.1016/j.isatra.2019.06.003
|
[21] |
H. Xia, W. X. Zheng, and J. Shao, “Event-triggered containment control for second-order multi-agent systems with sampled position data,” ISA Transactions, vol. 73, pp. 91–99, 2018. doi: 10.1016/j.isatra.2017.11.001
|
[22] |
Y. Zheng and L. Wang, “Containment control of heterogeneous multi-agent systems,” Int. Journal of Control, vol. 87, no. 1, pp. 1–8, 2014. doi: 10.1080/00207179.2013.814074
|
[23] |
R. Liao, L. Han, X. Dong, Q. Li, and Z. Ren, “Finite-time formation-containment tracking for second-order multi-agent systems with a virtual leader of fully unknown input,” Neurocomputing, vol. 415, pp. 234–246, 2020. doi: 10.1016/j.neucom.2020.07.067
|
[24] |
X. He, Q. Wang, and W. Yu, “Distributed finite-time containment control for second-order nonlinear multi-agent systems,” Applied Mathematics and Computation, vol. 268, pp. 509–521, 2015. doi: 10.1016/j.amc.2015.06.101
|
[25] |
F. Wang, Y. Ni, Z. Liu, and Z. Chen, “Fully distributed containment control for second-order multi-agent systems with communication delay,” ISA Transactions, vol. 99, pp. 123–129, 2020. doi: 10.1016/j.isatra.2019.09.009
|
[26] |
L. Han, X. Dong, Q. Li, and Z. Ren, “Formation-containment control for second-order multi-agent systems with time-varying delays,” Neurocomputing, vol. 218, pp. 439–447, 2016. doi: 10.1016/j.neucom.2016.09.001
|
[27] |
K. Liu, G. Xie, and L. Wang, “Containment control for second-order multi-agent systems with time-varying delays,” Systems &Control Letters, vol. 67, pp. 24–34, 2014.
|
[28] |
D. Wang, D. Wang, and W. Wei, “Necessary and sufficient conditions for containment control of multi-agent systems with time delay,” Automatica, vol. 103, pp. 418–423, 2019. doi: 10.1016/j.automatica.2018.12.029
|
[29] |
Q. Song, F. Liu, H. Su, and A. V. Vasilakos, “Semi-global and global containment control of multi-agent systems with second-order dynamics and input saturation,” Int. Journal of Robust &Nonlinear Control, vol. 26, no. 16, pp. 3460–3480, 2016.
|
[30] |
C. Xu, B. Li, and L. Yang, “Semi-global containment of discrete-time high-order multi-agent systems with input saturation via intermittent control,” IET Control Theory and Applications, vol. 14, no. 16, pp. 2303–2309, 2020. doi: 10.1049/iet-cta.2020.0110
|
[31] |
T. Liu, J. Qi and Z. P. Jiang, “ Distributed containment control of multi-agent systems with velocity and acceleration saturations,” Automatica, vol. 117, p. 108992, 2020.
|
[32] |
G. Wen, Y. Zhao, and Z. Duan, “Containment of higher-order multi-leader multi-agent systems: A dynamic output approach,” IEEE Trans. Automatic Control, vol. 61, no. 4, pp. 1135–1140, 2016. doi: 10.1109/TAC.2015.2465071
|
[33] |
S. Zuo, Y. Song, F. Lewis, and A. Davoudi, “Adaptive output containment control of heterogeneous multi-agent systems with unknown leaders,” Automatica, vol. 92, pp. 235–239, 2018. doi: 10.1016/j.automatica.2018.02.004
|
[34] |
J. Zhang and H. Su, “Formation-containment control for multi-agent systems with sampled data and time delays,” Neurocomputing, vol. 424, pp. 125–131, 2021. doi: 10.1016/j.neucom.2019.11.030
|
[35] |
X. Dong, Q. Li, Z. Ren, and Y. Zhong, “Formation-containment control for high-order linear time-invariant multi-agent systems with time delays,” Journal of the Franklin Institute, vol. 352, pp. 3564–3584, 2015. doi: 10.1016/j.jfranklin.2015.05.008
|
[36] |
G. Wen, G. Hu, Z. Zuo, Y. Zhao, and J. Cao, “Robust containment of uncertain linear multi-agent systems under adaptive protocols,” Int. Journal of Robust and Nonlinear Control, vol. 27, no. 12, pp. 2053–2069, 2017. doi: 10.1002/rnc.3670
|
[37] |
G. Wen, P. Wang, T. Huang, W. Yu, and J. Sun, “Robust neuro-adaptive containment of multileader multi-agent systems with uncertain dynamics,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 99, pp. 1–12, 2017.
|
[38] |
X. Wang, Y. Hong, and H. Ji, “Adaptive multi-agent containment control with multiple parametric uncertain leaders,” Automatica, vol. 50, no. 9, pp. 2366–2372, 2014. doi: 10.1016/j.automatica.2014.07.019
|
[39] |
J. Chen, Z. Guan, C. Yang, T. Li, D. He, and X. Zhang, “Distributed containment control of fractional-order uncertain multi-agent systems,” Journal of the Franklin Institute, vol. 353, no. 7, pp. 1672–1688, 2016. doi: 10.1016/j.jfranklin.2016.02.002
|
[40] |
P. Li, F. Jabbari and X. M. Sun, “Containment control of multi-agent systems with input saturation and unknown leader inputs,” Automatica, vol. 130, p. 109677, 2021.
|
[41] |
L. Wang, T. Han, X. S. Zhan, J. Wu, and H. Yan, “Bipartite containment for linear multi-agent systems subject to unknown exogenous disturbances,” Asian Journal of Control, DOI: 10.1002/asjc.2580, 2021.
|
[42] |
T. Han, B. Xiao, X. S. Zhan, and H. Yan, “Bipartite containment of descriptor multi-agent systems via an observer-based approach,” IET Control Theory and Applications, vol. 14, no. 9, pp. 3047–3051, 2020.
|
[43] |
J. Huang, Nonlinear Output Regulation: Theory and Applications, Philadelphia, PA: SIAM, 2004.
|
[44] |
H. Liang, H. Zhang, Z. Wang, and J. Wang, “Output regulation of state-coupled linear multi-agent systems with globally reachable topologies,” Neurocomputing, vol. 123, pp. 337–343, 2014. doi: 10.1016/j.neucom.2013.07.028
|
[45] |
Y. Su and J. Huang, “Cooperative output regulation of linear multi-agent systems by output feedback,” Systems &Control Letters, vol. 61, pp. 1248–1253, 2012.
|
[46] |
Y. Su, Y. Hong, and J. Huang, “A general result on the robust cooperative output regulation for linear uncertain multi-agent systems,” IEEE Trans. Automatic Control, vol. 58, no. 5, pp. 1275–1279, 2013. doi: 10.1109/TAC.2012.2229837
|
[47] |
S. Li, J. Zhang, M. Er, X. Luo, Z. Yang, and N. Wang, “Robust containment control of heterogeneous non-linear multi-agent systems via power series approach,” IET Control Theory and Applications, vol. 13, no. 4, pp. 496–505, 2019. doi: 10.1049/iet-cta.2018.5385
|
[48] |
S. E. Tuna, “LQR-based coupling gain for synchronization of linear systems”, 2008. [Online]. Available: http://arxiv.org/abs/0801.3390. Accessed on: May 21, 2019.
|
[49] |
S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequality in Systems and Control Theory, Philadelphia, PA: SIMA, 1994.
|
[50] |
B. A. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,” Applied Mathematics and Optimization, vol. 2, no. 2, pp. 170–194, 1975. doi: 10.1007/BF01447855
|
[51] |
B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976. doi: 10.1016/0005-1098(76)90006-6
|
[52] |
E. J. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Automatic Control, vol. 21, no. 1, pp. 25–34, 1976. doi: 10.1109/TAC.1976.1101137
|
[53] |
H. Liang, H. Zhang, Z. Wang, and J. Zhang, “Output regulation for heterogeneous linear multi-agent systems based on distributed internal model compensator,” Applied Mathematics &Computation, vol. 242, pp. 736–747, 2014.
|
[54] |
W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under dynamically changing interaction topologies,” IEEE Trans. Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. doi: 10.1109/TAC.2005.846556
|