IEEE/CAA Journal of Automatica Sinica
Citation: | A. Bono, L. D’Alfonso, G. Fedele, and V. Gazi, “Target capturing in an ellipsoidal region for a swarm of double integrator agents,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 801–811, May 2022. doi: 10.1109/JAS.2022.105551 |
[1] |
W. Ren and Y. Cao, Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues. Springer Science & Business Media, 2010.
|
[2] |
V. Gazi and K. M. Passino, Swarm Stability and Optimization. Springer Science & Business Media, 2011.
|
[3] |
C. Robin and S. Lacroix, “Multi-robot target detection and tracking: Taxonomy and survey,” Autonomous Robots, vol. 40, no. 4, pp. 729–760, 2016. doi: 10.1007/s10514-015-9491-7
|
[4] |
T.-H. Kim and T. Sugie, “Cooperative control for target-capturing task based on a cyclic pursuit strategy,” Automatica, vol. 43, no. 8, pp. 1426–1431, 2007. doi: 10.1016/j.automatica.2007.01.018
|
[5] |
J. Li and X. Chen, “Multi-AUV circular formation sliding mode control based on cyclic pursuit,” in Proc. IEEE Int. Conf. Mechatronics and Automation, 2020, pp. 1365–1370.
|
[6] |
G. Fedele, L. D’Alfonso, F. Chiaravalloti, and G. D’Aquila, “Obstacles avoidance based on switching potential functions,” Journal of Intelligent &Robotic Systems, vol. 90, no. 3–4, pp. 387–405, 2018.
|
[7] |
L. Blázovics, T. Lukovszki, and B. Forstner, “Target surrounding solution for swarm robots,” in Information and Communication Technologies, R. Szabó and A. Vidács, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 251–262.
|
[8] |
Y. Kobayashi, K. Otsubo, and S. Hosoe, “Design of decentralized capturing behavior by multiple mobile robots,” in Proc. IEEE Workshop Distributed Intelligent Systems: Collective Intelligence and Its Applications, 2006, pp. 13–18.
|
[9] |
J. Yao, R. Ordonez, and V. Gazi, “Swarm tracking using artificial potentials and sliding mode control,” Journal of Dynamic Systems,Measurement and Control, vol. 129, no. 5, pp. 749–754, Sept. 2007. doi: 10.1115/1.2764511
|
[10] |
H. Kawakami and T. Namerikawa, “Cooperative target-capturing strategy for multi-vehicle systems with dynamic network topology,” in Proc. American Control Conf., 2009, pp. 635–640.
|
[11] |
M. Kothari, R. Sharma, I. Postlethwaite, R. W. Beard, and D. Pack, “Cooperative target-capturing with incomplete target information,” Journal of Intelligent &Robotic Systems, vol. 72, no. 3–4, pp. 373–384, 2013.
|
[12] |
B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated, 2010.
|
[13] |
M. Lv, W. Yu, J. Cao, and S. Baldi, “Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control,” IEEE Trans. Cybernetics, pp. 1–13, 2020. DOI: 10.1109/TCYB.2020.3028171
|
[14] |
M. Lv, W. Yu, J. Cao, and S. Baldi, “A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems,” IEEE Trans. Neural Networks and Learning Systems, pp. 1–13, 2021. DOI: 10.1109/TNNLS.2021.3070824
|
[15] |
O. Y. Nieto and L. Colombo, “A geometric path planning strategy based on variational calculus for the shape control of multi-agent Lagrangian systems,” in Proc. 29th Mediterranean Conf. Control and Automation, 2021, pp. 1092–1099.
|
[16] |
W. Wang, H. Liang, Y. Pan, and T. Li, “Prescribed performance adaptive fuzzy containment control for nonlinear multi-agent systems using disturbance observer,” IEEE Trans. Cybernetics, vol. 50, no. 9, pp. 3879–3891, 2020. doi: 10.1109/TCYB.2020.2969499
|
[17] |
A. Bono, G. Fedele, and G. Franzè, “A swarm-based distributed model predictive control scheme for autonomous vehicle formations in uncertain environments,” IEEE Trans. Cybernetics, 2021.
|
[18] |
Q. Shi, X. Cui, S. Zhao, and M. Lu, “Sequential TOA-based moving target localization in multi-agent networks,” IEEE Communications Letters, vol. 24, no. 8, pp. 1719–1723, 2020. doi: 10.1109/LCOMM.2020.2993894
|
[19] |
M. Deghat, I. Shames, B. D. Anderson, and C. Yu, “Localization and circumnavigation of a slowly moving target using bearing measurements,” IEEE Trans. Automatic Control, vol. 59, no. 8, pp. 2182–2188, 2014. doi: 10.1109/TAC.2014.2299011
|
[20] |
S. Chun and Y.-P. Tian, “Multi-targets localization and elliptical circumnavigation by multi-agents using bearing-only measurements in two-dimensional space,” Int. Journal of Robust and Nonlinear Control, vol. 30, no. 8, pp. 3250–3268, 2020. doi: 10.1002/rnc.4932
|
[21] |
S. Chun, “Bearing-only-based formation circumnavigation guided by multiple unknown targets,” IEEE Access, vol. 8, pp. 228377–228391, 2020. doi: 10.1109/ACCESS.2020.3046506
|
[22] |
Y. Yu, Z. Li, X. Wang, and L. Shen, “Bearing-only circumnavigation control of the multi-agent system around a moving target,” IET Control Theory &Applications, vol. 13, no. 17, pp. 2747–2757, 2019.
|
[23] |
G. Fedele and L. D’Alfonso, “A kinematic model for swarm finite-time trajectory tracking,” IEEE Trans. Cybernetics, vol. 49, no. 10, pp. 3806–3815, 2018.
|
[24] |
G. Fedele, L. D’Alfonso, and A. Bono, “Vortex formation in a swarm of agents with a coordinates mixing matrix-based model,” IEEE Control Systems Letters, vol. 4, pp. 420–425, 2020. doi: 10.1109/LCSYS.2019.2944128
|
[25] |
G. Fedele and L. D’Alfonso, “A coordinates mixing matrix-based model for swarm formation,” Int. Journal of Control, DOI: 10.1080/00207179.2019.1613561.
|
[26] |
G. Fedele, L. D’Alfonso, and A. Bono, “A discrete-time model for swarm formation with coordinates coupling matrix,” IEEE Control Systems Letters, DOI: 10.1109/LCSYS.2020.2998669.
|
[27] |
A. Filippov, Differential Equations With Discontinuous Righthand Sides, A. F.M., Ed. Springer, Dordrecht, 1988.
|
[28] |
R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Advances in Computational Mathematics, vol. 5, no. 1, pp. 329–359, 1996. doi: 10.1007/BF02124750
|
[29] |
H. K. Khalil, High-Gain Observers In Nonlinear Feedback Control. SIAM, 2017.
|
[30] |
M. M. Zavlanos, A. Jadbabaie, and G. J. Pappas, “Flocking while preserving network connectivity,” in Proc. 46th IEEE Conf. Decision and Control, 2007, pp. 2919–2924.
|
[31] |
H. K. Khalil, Nonlinear Systems, 3rd. Prentice Hall, 2002.
|
[32] |
L. Sabattini, C. Secchi, and C. Fantuzzi, “Arbitrarily shaped formations of mobile robots: Artificial potential fields and coordinate transformation,” Autonomous Robots, vol. 30, no. 4, pp. 385–397, 2011.
|
[33] |
Perform co-simulation between simulink and gazebo. [Online]. Available: https://www.mathworks.com/help/robotics/ug/perform-co-simulation-between-simulink-and-gazebo.html
|
[34] |
Pioneer 2 operations manual. [Online]. Available: http://www.iri.upc.edu/groups/lrobots/private/Pioneer2/AT_DISK1/DOCUMENTS/p2opman9.pdf
|