IEEE/CAA Journal of Automatica Sinica
Citation: | L. Ma, Y.-L. Wang, and Q.-L. Han, “Cooperative target tracking of multiple autonomous surface vehicles under switching interaction topologies,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 673–684, Mar. 2023. doi: 10.1109/JAS.2022.105509 |
[1] |
T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Chichester, UK: Wiley, 2011.
|
[2] |
Y.-L. Wang and Q.-L. Han, “Network-based modelling and dynamic output feedback control for unmanned marine vehicles,” Automatica, vol. 91, pp. 43–53, May 2018. doi: 10.1016/j.automatica.2018.01.026
|
[3] |
Z. Du, R. R. Negenborn, and V. Reppa, “Cooperative multi-agent control for autonomous ship towing under environmental disturbances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1365–1379, Aug. 2021. doi: 10.1109/JAS.2021.1004078
|
[4] |
C. Lv, H. Yu, J. Chi, T. Xu, H. Zang, H. Jiang, and Z. Zhang, “A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system,” Ocean Eng., vol. 176, pp. 222–230, Mar. 2019. doi: 10.1016/j.oceaneng.2019.02.007
|
[5] |
Z. Gao and G. Guo, “Command filtered finite/fixed-time heading tracking control of surface vehicles,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1667–1676, Oct. 2021. doi: 10.1109/JAS.2021.1004135
|
[6] |
Y.-L. Wang, Q.-L. Han, M. Fei, and C. Peng, “Network-based T-S fuzzy dynamic positioning controller design for unmanned marine vehicles,” IEEE Trans. Cybern., vol. 48, no. 9, pp. 2750–2763, Sept. 2018. doi: 10.1109/TCYB.2018.2829730
|
[7] |
J. Du, X. Hu, M. Krstić, and Y. Sun, “Robust dynamic positioning of ships with disturbances under input saturation,” Automatica, vol. 7, pp. 207–214, Nov. 2016.
|
[8] |
L. Ma, Y.-L. Wang, and Q.-L. Han, “Event-triggered dynamic positioning for mass-switched unmanned marine vehicles in network environments,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3159–3171, May 2022. doi: 10.1109/TCYB.2020.3008998
|
[9] |
J. Ye, S. Roy, M. Godjevac, V. Reppa, and S. Baldi, “Robustifying dynamic positioning of crane vessels for heavy lifting operation,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 753–765, Apr. 2021. doi: 10.1109/JAS.2021.1003913
|
[10] |
M. Breivik, V. E. Hovstein, and T. I. Fossen, “Straight-line target tracking for unmanned surface vehicles,” Model.,Identificat. Control, vol. 29, no. 4, pp. 131–149, 2008. doi: 10.4173/mic.2008.4.2
|
[11] |
L. Liu, D. Wang, Z. Peng, C. L. P. Chen, and T. Li, “Bounded neural network control for target tracking of underactuated autonomous surface vehicles in the presence of uncertain target dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 4, pp. 1241–1249, Apr. 2019. doi: 10.1109/TNNLS.2018.2868978
|
[12] |
S. Gao, Z. Peng, L. Liu, H. Wang, and D. Wang, “Coordinated target tracking by multiple unmanned surface vehicles with communication delays based on a distributed event-triggered extended state observer”, Ocean Eng., vol. 227, p. 108283, May 2021.
|
[13] |
Y. Yang, J. Du, H. Liu, C. Guo, and A. Abraham, “A trajectory tracking robust controller of surface vessels with disturbance uncertainties,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1511–1518, Jul. 2014. doi: 10.1109/TCST.2013.2281936
|
[14] |
S. Dai, S. He, M. Wang, and C. Yuan, “Adaptive neural control of underactuated surface vessels with prescribed performance guarantees,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3686–3698, Dec. 2019. doi: 10.1109/TNNLS.2018.2876685
|
[15] |
Z. Zheng, L. Sun, and L. Xie, “Error-constrained LOS path following of a surface vessel with actuator saturation and faults,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 10, pp. 1794–1804, Oct. 2018. doi: 10.1109/TSMC.2017.2717850
|
[16] |
L. Liu, D. Wang, and Z. Peng, “ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation,” IEEE J. Ocean. Eng., vol. 42, no. 2, pp. 477–487, Apr. 2017. doi: 10.1109/JOE.2016.2569218
|
[17] |
C. Liu, D. Wang, Y. Zhang, and X. Meng, “Model predictive control for path following and roll stabilization of marine vessels based on neurodynamic optimization,” Ocean Eng., vol. 217, Dec. 2020.
|
[18] |
Z. Peng, J. Wang, D. Wang, and Q.-L. Han, “An overview of recent advances in coordinated control of multiple autonomous surface vehicles,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 732–745, Feb. 2021. doi: 10.1109/TII.2020.3004343
|
[19] |
O. Elhaki and K. Shojaei, “Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance,” Ocean Eng., vol. 167, pp. 239–256, Nov. 2018. doi: 10.1016/j.oceaneng.2018.08.007
|
[20] |
O. Namaki-Shoushtari, A. P. Aguiar, and A. Khaki-Sedigh, “Target tracking of autonomous robotic vehicles using range-only measurements: a switched logic-based control strategy,” Int. J. Robust Nonlinear Control, vol. 22, no. 17, p. 1983C1998, Nov. 2011.
|
[21] |
K. Shojaei, “Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles,” Neural Comput. Appl., vol. 31, pp. 509–521, Feb. 2019.
|
[22] |
K. Choi, S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive formation control in absence of leader’s velocity information,” IET Control Theory Appl., vol. 4, no. 4, pp. 521–528, Apr. 2010. doi: 10.1049/iet-cta.2009.0074
|
[23] |
Z. Peng and D. Wang, “Robust adaptive formation control of autonomous surface vehicles with uncertain dynamics,” IET Control Theory Appl., vol. 5, no. 12, pp. 1378–1387, Aug. 2011. doi: 10.1049/iet-cta.2010.0429
|
[24] |
R. Cui, S. S. Ge, B. V. E. How, and Y. S. Choo, “Leader-follower formation control of underactuated autonomous underwater vehicles,” Ocean Eng., vol. 37, no. 17−18, pp. 1491–1502, Dec. 2010. doi: 10.1016/j.oceaneng.2010.07.006
|
[25] |
L. Ma, Y.-L. Wang, and Q.-L. Han, “H∞ cluster formation control of networked multiagent systems with stochastic sampling,” IEEE Trans. Cybern., vol. 51, no. 12, pp. 5761–5772, Dec. 2021. doi: 10.1109/TCYB.2019.2959201
|
[26] |
Y. Yang and D. Yue, “Distributed tracking control of a class of multi-agent systems in non-affine pure-feedback form under a directed topology,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 169–180, Jan. 2018. doi: 10.1109/JAS.2017.7510382
|
[27] |
X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, and X.-M. Zhang, “Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 50, no. 9, pp. 3112–3125, Sept. 2020. doi: 10.1109/TSMC.2020.3010825
|
[28] |
Y. Wang, Y. Liu, and Z. Wang, “Theory and experiments on enclosing control of multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1677–1685, Oct. 2021. doi: 10.1109/JAS.2021.1004138
|
[29] |
W. Hu, L. Liu, and G. Feng, “Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1914–1924, Aug. 2017. doi: 10.1109/TCYB.2016.2602327
|
[30] |
X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 990–1004, Jun. 2022. doi: 10.1109/JAS.2021.1004263
|
[31] |
B. Xiao, X. Yang, and X. Huo, “A novel disturbance estimation scheme for formation control of ocean surface vessels,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4994–5003, Jun. 2017. doi: 10.1109/TIE.2016.2622219
|
[32] |
T. Li, R. Zhao, C. L. P. Chen, L. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3243–3253, Nov. 2018. doi: 10.1109/TCYB.2018.2794968
|
[33] |
Z. Peng, J. Wang, and D. Wang, “Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation,” IEEE Trans. Control Syst. Technol., vol. 26, no. 3, pp. 1083–1090, May 2018. doi: 10.1109/TCST.2017.2699167
|
[34] |
X. Dong, Y. Zhou, Z. Ren, and Y. Zhong, “Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5014–5024, Jun. 2017. doi: 10.1109/TIE.2016.2593656
|
[35] |
J. Dai and G. Guo, “Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies,” Inf. Sci., vol. 459, pp. 290–301, Aug. 2018. doi: 10.1016/j.ins.2018.04.054
|
[36] |
Y. Cheng, Y. Zhang, L. Shi, J. Shao, and Y. Xiao, “Consensus seeking in heterogeneous second-order multi-agent systems with switching topologies and random link failures,” Neurocomputing, vol. 319, pp. 188–195, Nov. 2018. doi: 10.1016/j.neucom.2018.08.051
|
[37] |
M. Meng, G. Xiao, C. Zhai, G. Li, and Z. Wang, “Distributed consensus of heterogeneous multi-agent systems subject to switching topologies and delays,” J. Frankl. Inst., vol. 357, no. 11, pp. 6899–6917, Jul. 2020. doi: 10.1016/j.jfranklin.2020.04.045
|
[38] |
R. Cui, L. Chen, C. Yang, and M. Chen, “Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6785–6795, Aug. 2017. doi: 10.1109/TIE.2017.2694410
|
[39] |
J. Zhang, S. Yu, and Y. Yan, “Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances,” Ocean Eng., vol. 186, p. 106109, Aug. 2019.
|
[40] |
Q. Song, F. Liu, J. Cao, and W. Yu, “M-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with non-linear dynamics,” IEEE Trans. Cybern., vol. 43, no. 6, pp. 1688–1697, Dec. 2013. doi: 10.1109/TSMCB.2012.2227723
|
[41] |
J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” in Proc. 38th IEEE Conf. Decis. Control, Dec. 1999, pp. 2655–2660.
|
[42] |
L. Zou, Z. Wang, J. Hu, and D. Zhou, “Moving horizon estimation with unknown inputs under dynamic quantization effects,” IEEE Trans. Autom. Control, vol. 65, no. 12, pp. 5368–5375, Dec. 2020. doi: 10.1109/TAC.2020.2968975
|
[43] |
L. Zou, Z. Wang, J. Hu, and H. Dong, “Ultimately bounded filtering subject to impulsive measurement outliers,” IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 304–319, Jan. 2022. doi: 10.1109/TAC.2021.3081256
|
[44] |
L. Zou, Z. Wang, Q.-L. Han, and D. Yue, “Tracking control under round-robin scheduling: Handling impulsive transmission outliers,” IEEE Trans. Cybern., DOI: 10.1109/TCYB.2021.3115459.
|
[45] |
R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory,” Automatica, vol. 41, no. 2, pp. 289–298, Feb. 2005. doi: 10.1016/j.automatica.2004.10.006
|
[46] |
C. Gao, Z. Wang, X. He, and Q.-L. Han, “Consensus control of linear multiagent systems under actuator imperfection: When saturation meets fault,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 52, no. 4, pp. 2651–2663, Apr. 2022. doi: 10.1109/TSMC.2021.3050370
|
[47] |
C. Gao, Z. Wang, X. He, and D. Yue, “Sampled-data-based fault-tolerant consensus control for multi-agent systems: A data privacy preserving scheme,” Automatica, vol. 133, p. 109847, Nov. 2021.
|