IEEE/CAA Journal of Automatica Sinica
Citation: | L. Jin, X. Zheng, and X. Luo, “Neural dynamics for distributed collaborative control of manipulators with time delays,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 854–863, May 2022. doi: 10.1109/JAS.2022.105446 |
[1] |
J. S. Wang, J. Wang, and Q. L. Han, “Neurodynamics-based model predictive control of continuous-time under-actuated mechatronic systems,” IEEE/ASME Trans. Mechatron., vol. 26, no. 1, pp. 311–322, Feb. 2021.
|
[2] |
Z. H. Peng, J. Wang, and Q. L. Han, “Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8724–8732, Nov. 2019. doi: 10.1109/TIE.2018.2885726
|
[3] |
C. T. Xu and X. He, “A fully distributed approach to optimal energy scheduling of users and generators considering a novel combined neurodynamic algorithm in smart grid,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1325–1335, Jul. 2021. doi: 10.1109/JAS.2021.1004048
|
[4] |
X. Luo, Y. Zhou, Z. G. Liu, and M. C. Zhou, “Fast and accurate non-negative latent factor analysis on high-dimensional and sparse matrices in recommender systems,” IEEE Trans. Knowl. Data Eng., to be published. DOI: 10.1109/TKDE.2021.3125252.
|
[5] |
L. Jin, L. Wei, and S. Li, “Gradient-based differential neural-solution to time-dependent nonlinear optimization,” IEEE Trans. Autom. Control, to be published. DOI: 10.1109/TAC.2022.3144135.
|
[6] |
N. Liu and S. T. Qin, “A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization,” IEEE Trans. Cybern., vol. 49, no. 11, pp. 3946–3956, Nov. 2019. doi: 10.1109/TCYB.2018.2855724
|
[7] |
S. P. Madruga, A. H. B. M. Tavares, S. O. D. Luiz, T. P. Do Nascimento, and A. M. N. Lima, “Aerodynamic effects compensation on multi-rotor UAVs based on a neural network control allocation approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 295–312, Feb. 2022. doi: 10.1109/JAS.2021.1004266
|
[8] |
X. Luo, H. Wu, Z. Wang, J. J. Wang, and D. Y. Meng, “A novel approach to large-scale dynamically weighted directed network representation,” IEEE Trans. Pattern Anal. Mach. Intell., to be published. DOI: 10.1109/TPAMI.2021.3132503.
|
[9] |
Y. Saad and H. A. Van Der Vorst, “Iterative solution of linear systems in the 20th century,” J. Comput. Appl. Math., vol. 123, no. 1−2, pp. 1–33, Nov. 2000. doi: 10.1016/S0377-0427(00)00412-X
|
[10] |
R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004. doi: 10.1109/TAC.2004.834113
|
[11] |
L. Moreau, “Stability of multiagent systems with time-dependent communication links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp. 169–182, Feb. 2005. doi: 10.1109/TAC.2004.841888
|
[12] |
U. Münz, A. Papachristodoulou, and F. Allgöwer, “Delay robustness in consensus problems,” Automatica, vol. 46, no. 8, pp. 1252–1265, Aug. 2010. doi: 10.1016/j.automatica.2010.04.008
|
[13] |
D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and X. D. Wu, “A data-characteristic-aware latent factor model for web services QoS prediction,” IEEE Trans. Knowl. Data Eng., to be published. DOI: 10.1109/TKDE.2020.3014302.
|
[14] |
X. M. Zhang, Q. L. Han, and X. H. Ge, “Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 77–85, Jan. 2021.
|
[15] |
X. M. Zhang, Q. L. Han, and X. H. Ge, “The construction of augmented Lyapunov-Krasovskii functionals and the estimation of their derivatives in stability analysis of time-delay systems: A survey,” Int. J. Syst. Sci., to be published. DOI: 10.1080/00207721.2021.2006356.
|
[16] |
X. Wang, A. Saberi, A. A. Stoorvogel, H. F. Grip, and T. Yang, “Consensus in the network with uniform constant communication delay,” Automatica, vol. 49, no. 8, pp. 2461–2467, Aug. 2013. doi: 10.1016/j.automatica.2013.04.023
|
[17] |
Y. Y. Chen and Y. Shi, “Consensus for linear multiagent systems with time-varying delays: A frequency domain perspective,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 2143–2150, Aug. 2017. doi: 10.1109/TCYB.2016.2590480
|
[18] |
Z. J. Li and C. Y. Su, “Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 9, pp. 1400–1413, Sep. 2013. doi: 10.1109/TNNLS.2013.2258681
|
[19] |
Z. B. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 23–36, Jan. 2021. doi: 10.1109/JAS.2020.1003381
|
[20] |
A. H. Khan, Z. L. Shao, S. Li, Q. X. Wang, and N. Guan, “Which is the best PID variant for pneumatic soft robots? An experimental study” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 451–460, Mar. 2020. doi: 10.1109/JAS.2020.1003045
|
[21] |
B. X. Wu, J. P. Zhong, and C. G. Yang, “A visual-based gesture prediction framework applied in social robots,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 510–519, Mar. 2022. doi: 10.1109/JAS.2021.1004243
|
[22] |
D. Nakhaeinia, P. Payeur, and R. Laganiere, “A mode-switching motion control system for reactive interaction and surface following using industrial robots,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 670–682, May 2018. doi: 10.1109/JAS.2018.7511069
|
[23] |
H. Zhang, H. Z. Jin, Z. X. Liu, Y. B. Liu, Y. H. Zhu, and J. Zhao, “Real-time kinematic control for redundant manipulators in a time-varying environment: Multiple-dynamic obstacle avoidance and fast tracking of a moving object,” IEEE Trans. Ind. Informat., vol. 16, no. 1, pp. 28–41, Jan. 2020. doi: 10.1109/TII.2019.2917392
|
[24] |
M. Yang, Y. N. Zhang, Z. J. Zhang, and H. F. Hu, “Adaptive discrete ZND models for tracking control of redundant manipulator,” IEEE Trans. Ind. Informat., vol. 16, no. 12, pp. 7360–7368, Dec. 2020. doi: 10.1109/TII.2020.2976844
|
[25] |
Y. Y. Zhang, S. Li, J. Gui, and X. Luo, “Velocity-level control with compliance to acceleration-level constraints: A novel scheme for manipulator redundancy resolution,” IEEE Trans. Ind. Informat., vol. 14, no. 3, pp. 921–930, Mar. 2018. doi: 10.1109/TII.2017.2737363
|
[26] |
Z. T. Xie, L. Jin, X. Luo, S. Li, and X. C. Xiao, “A data-driven cyclic-motion generation scheme for kinematic control of redundant manipulators,” IEEE Trans. Control Syst. Technol., vol. 29, no. 1, pp. 53–63, Jan. 2021. doi: 10.1109/TCST.2019.2963017
|
[27] |
Z. J. Zhang, Z. J. Li, Y. N. Zhang, Y. M. Luo, and Y. Q. Li, “Neural-dynamic-method-based dual-arm CMG scheme with time-varying constraints applied to humanoid robots,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3251–3262, Dec. 2015. doi: 10.1109/TNNLS.2015.2469147
|
[28] |
J. Z. Zhang, L. Jin, and C. G. Yang, “Distributed cooperative kinematic control of multiple robotic manipulators with an improved communication efficiency,” IEEE/ASME Trans. Mechatron., vol. 27, no. 1, pp. 149–158, Feb. 2022. doi: 10.1109/TMECH.2021.3059441
|
[29] |
L. Huang, M. C. Zhou, K. R. Hao, and E. Hou, “A survey of multi-robot regular and adversarial patrolling,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 894–903, Jul. 2019. doi: 10.1109/JAS.2019.1911537
|
[30] |
X. Luo, Y. Yuan, S. L. Chen, N. Y. Zeng, and Z. D. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., to be published. DOI: 10.1109/TKDE.2020.3033324.
|
[31] |
Z. Y. Zuo, Q. L. Han, B. D. Ning, X. H. Ge, and X. M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2322–2334, Jun. 2018. doi: 10.1109/TII.2018.2817248
|
[32] |
X. H. Ge and Q. L. Han, “Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8118–8127, Oct. 2017. doi: 10.1109/TIE.2017.2701778
|
[33] |
Y. M. Ju, D. R. Ding, X. He, Q. L. Han, and G. L. Wei, “Consensus control of multi-agent systems using fault-estimation-in-the-loop: Dynamic event-triggered case,” IEEE/CAA J. Autom. Sinica, to be published. DOI: 10.1109/JAS.2021.1004386.
|
[34] |
D. R. Ding, Q. L. Han, X. H. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
|
[35] |
W. Chen, D. R. Ding, X. H. Ge, Q. L. Han, and G. L. Wei, “H∞ containment control of multiagent systems under event-triggered communication scheduling: The finite-horizon case,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1372–1382, Apr. 2020. doi: 10.1109/TCYB.2018.2885567
|
[36] |
Y. Wan, J. D. Cao, A. Alsaedi, and T. Hayat, “Distributed observer-based stabilization of nonlinear multi-agent systems with sampled-data control,” Asian J. Control, vol. 19, no. 3, pp. 918–928, May 2017. doi: 10.1002/asjc.1415
|
[37] |
S. Li, J. B. He, Y. M. Li, and M. U. Rafique, “Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2, pp. 415–426, Feb. 2017. doi: 10.1109/TNNLS.2016.2516565
|
[38] |
L. Jin, S. Li, X. Luo, Y. M. Li, and B. Qin, “Neural dynamics for cooperative control of redundant robot manipulators,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 3812–3821, Sep. 2018. doi: 10.1109/TII.2018.2789438
|
[39] |
M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton, USA: Princeton University Press, 2010.
|
[40] |
C. L. Liu, L. Shan, Y. Y. Chen, and Y. Zhang, “Average-consensus filter of first-order multi-agent systems with disturbances,” IEEE Trans. Circuits Syst. II:Express Briefs, vol. 65, no. 11, pp. 1763–1767, Nov. 2018. doi: 10.1109/TCSII.2017.2762723
|
[41] |
W. W. Yu, G. R. Chen, and M. Cao, “Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems,” Automatica, vol. 46, no. 6, pp. 1089–1095, Jun. 2010. doi: 10.1016/j.automatica.2010.03.006
|
[42] |
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
|
[43] |
G. F. Liu, J. J. Xu, X. Wang, and Z. X. Li, “On quality functions for grasp synthesis, fixture planning, and coordinated manipulation,” IEEE Trans. Autom. Sci. Eng., vol. 1, no. 2, pp. 146–162, Oct. 2004. doi: 10.1109/TASE.2004.836760
|
[44] |
A. P. Kypson, L. W. Nifong, and W. R. Chitwood Jr., “Robotic cardiac surgery,” J. Long-Term Effects Med. Implants, vol. 13, no. 6, pp. 451–464, Feb. 2003.
|
[45] |
T. H. Zhang, J. H. Xiao, L. Li, C. Wang, and G. M. Xie, “Toward coordination control of multiple fish-like robots: Real-time vision-based pose estimation and tracking via deep neural networks,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1964–1976, Dec. 2021. doi: 10.1109/JAS.2021.1004228
|
[46] |
Y. Aiyama, M. Hara, T. Yabuki, J. Ota, and T. Arai, “Cooperative transportation by two four-legged robots with implicit communication,” Robot. Auton. Syst., vol. 29, no. 1, pp. 13–19, Oct. 1999. doi: 10.1016/S0921-8890(99)00034-2
|
[47] |
J. Welch, D. Backer, L. Blitz, D. C. J. Bock, G. C. Bower, C. Cheng, et al., “The Allen telescope array: The first widefield, panchromatic, snapshot radio camera for radio astronomy and SETI,” Proc. IEEE, vol. 97, no. 8, pp. 1438–1447, Aug. 2009. doi: 10.1109/JPROC.2009.2017103
|