IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Tian, Y. D. Feng, X. Y. Zhang, and C. Y. Sun, “A fast clustering based evolutionary algorithm for super-large-scale sparse multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1048–1063, Apr. 2023. doi: 10.1109/JAS.2022.105437 |
[1] |
Y. C. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning: An overview and case studies,” IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.), vol. 38, no. 3, pp. 397–415, May 2008. doi: 10.1109/TSMCC.2008.919172
|
[2] |
Y. Tian, S. S. Yang, L. Zhang, F. C. Duan, and X. Y. Zhang, “A surrogate-assisted multiobjective evolutionary algorithm for large-scale task-oriented pattern mining,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 2, pp. 106–116, Apr. 2019. doi: 10.1109/TETCI.2018.2872055
|
[3] |
Y. Xiang, Y. R. Zhou, Z. B. Zheng, and M. Q. Li, “Configuring software product lines by combining many-objective optimization and SAT solvers,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 4, p. 14, Feb. 2018.
|
[4] |
Y. Tian, X. C. Su, Y. S. Su, and X. Y. Zhang, “EMODMI: A multi-objective optimization based method to identify disease modules,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 5, no. 4, pp. 570–582, Aug. 2021. doi: 10.1109/TETCI.2020.3014923
|
[5] |
J. Branke, B. Scheckenbach, M. Stein, K. Deb, and H. Schmeck, “Portfolio optimization with an envelope-based multi-objective evolutionary algorithm,” Eur. J. Oper. Res., vol. 199, no. 3, pp. 684–693, Dec. 2009. doi: 10.1016/j.ejor.2008.01.054
|
[6] |
R. Cheng, Y. C. Jin, M. Olhofer, and B. Sendhoff, “Test problems for large-scale multiobjective and many-objective optimization,” IEEE Trans. Cybern., vol. 47, no. 12, pp. 4108–4121, Dec. 2017. doi: 10.1109/TCYB.2016.2600577
|
[7] |
L. M. Antonio and C. A. Coello Coello, “Use of cooperative coevolution for solving large scale multiobjective optimization problems,” in Proc. IEEE Congr. Evolutionary Computation, Cancun, Mexico, 2013, pp. 2758–2765.
|
[8] |
L. M. Antonio, C. A. Coello Coello, S. G. Brambila, J. F. González, and G. C. Tapia, “Operational decomposition for large scale multi-objective optimization problems,” in Proc. Genetic and Evolutionary Computation Conf. Companion, Prague, Czech Republic, 2019, pp. 225–226.
|
[9] |
X. L. Ma, F. Liu, Y. T. Qi, X. D. Wang, L. L. Li, L. C. Jiao, M. L. Yin, and M. G. Gong, “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables,” IEEE Trans. EComput., vol. 20, no. 2, pp. 275–298, Apr. 2016.
|
[10] |
X. Y. Zhang, Y. Tian, R. Cheng, and Y. C. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. EComput., vol. 22, no. 1, pp. 97–112, Feb. 2018.
|
[11] |
H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework for large-scale multiobjective optimization based on problem transformation,” IEEE Trans. EComput., vol. 22, no. 2, pp. 260–275, Apr. 2018.
|
[12] |
Y. Tian, C. Lu, X. Y. Zhang, K. C. Tan, and Y. C. Jin, “Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3115–3128, Jun. 2021. doi: 10.1109/TCYB.2020.2979930
|
[13] |
Y. C. Hua, Q. Q. Liu, K. R. Hao, and Y. C. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
|
[14] |
C. He, R. Cheng, C. J. Zhang, Y. Tian, Q. Chen, and X. Yao, “Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers,” IEEE Trans. EComput., vol. 24, no. 5, pp. 868–881, Oct. 2020.
|
[15] |
S. Singh, J. Kubica, S. Larsen, and D. Sorokina, “Parallel large scale feature selection for logistic regression,” in Proc. SIAM Int. Conf. Data Mining, Sparks, USA, 2009, pp. 1172–1183.
|
[16] |
J. Liu, M. G. Gong, Q. G. Miao, X. G. Wang, and H. Li, “Structure learning for deep neural networks based on multiobjective optimization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2450–2463, Jun. 2018. doi: 10.1109/TNNLS.2017.2695223
|
[17] |
K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Syst., vol. 9, no. 4, pp. 115–148, 1995.
|
[18] |
K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Comput. Sci. Inform., vol. 26, no. 4, pp. 30–45, 1996.
|
[19] |
Y. Tian, S. S. Yang, X. Y. Zhang, and Y. C. Jin, “Using PlatEMO to solve multi-objective optimization problems in applications: A case study on feature selection,” in Proc. IEEE Congr. Evolutionary Computation, Wellington, New Zealand, 2019, pp. 1–8.
|
[20] |
Y. Tian, X. T. Zheng, X. Y. Zhang, and Y. C. Jin, “Efficient large-scale multiobjective optimization based on a competitive swarm optimizer,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3696–3708, Aug. 2020. doi: 10.1109/TCYB.2019.2906383
|
[21] |
W. J. Hong, P. Yang, and K. Tang, “Evolutionary computation for large-scale multi-objective optimization: A decade of progresses,” Int. J. Autom. Comput., vol. 18, no. 2, pp. 155–169, Apr. 2021. doi: 10.1007/s11633-020-1253-0
|
[22] |
Y. Tian, L. C. Si, X. Y. Zhang, R. Cheng, C. He, K. C. Tan, and Y. C. Jin, “Evolutionary large-scale multi-objective optimization: A survey,” ACM Comput. Surv., vol. 54, no. 8, p. 174, Nov. 2022.
|
[23] |
A. Song, Q. Yang, W. N. Chen, and J. Zhang, “A random-based dynamic grouping strategy for large scale multi-objective optimization,” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, Canada, 2016, pp. 468–475.
|
[24] |
F. Sander, H. Zille, and S. Mostaghim, “Transfer strategies from single- to multi-objective grouping mechanisms,” in Proc. Genetic and Evolutionary Computation Conf., Kyoto, Japan, 2018, pp. 729–736.
|
[25] |
M. H. Li and J. X. Wei, “A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems,” in Proc. Genetic and Evolutionary Computation Conf. Companion, Kyoto, Japan, 2018, pp. 1716–1721.
|
[26] |
H. K, Chen, X. M. Zhu, W. Pedrycz, S. Yin, G. H. Wu, and H. Yan, “PEA: Parallel evolutionary algorithm by separating convergence and diversity for large-scale multi-objective optimization,” in Proc. 38th IEEE Int. Conf. Distributed Computing Systems, Vienna, Austria, 2018, pp. 223–232.
|
[27] |
C. He, L. H. Li, Y. Tian, X. Y. Zhang, R. Cheng, Y. C. Jin, and X. Yao, “Accelerating large-scale multiobjective optimization via problem reformulation,” IEEE Trans. EComput., vol. 23, no. 6, pp. 949–961, Dec. 2019.
|
[28] |
H. Qian and Y. Yu, “Solving high-dimensional multi-objective optimization problems with low effective dimensions,” in Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, USA, 2017, pp. 875–881.
|
[29] |
W. J. Hong, K. Tang, A. M. Zhou, H. Ishibuchi, and X. Yao, “A scalable indicator-based evolutionary algorithm for large-scale multiobjective optimization,” IEEE Trans. EComput., vol. 23, no. 3, pp. 525–537, Jun. 2019.
|
[30] |
Y. Tian, C. Lu, X. Y. Zhang, F. Cheng, and Y. C. Jin, “A pattern mining-based evolutionary algorithm for large-scale sparse multiobjective optimization problems,” IEEE Trans. Cybern., 2020. vol. 52, no. 7, pp. 6784–6797, Jul. 2022.
|
[31] |
Z. C. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf, “NSGA-NET: A multi-objective genetic algorithm for neural architecture search,” arXiv preprint arXiv: 1810.03522, Oct. 2018.
|
[32] |
Y. Tian, S. S. Yang, and X. Y. Zhang, “An evolutionary multiobjective optimization based fuzzy method for overlapping community detection,” IEEE Trans. Fuzzy Syst., vol. 28, no. 11, pp. 2841–2855, Nov. 2020. doi: 10.1109/TFUZZ.2019.2945241
|
[33] |
X. Y. Zhang, F. C. Duan, L. Zhang, F. Cheng, Y. C. Jin, and K. Tang, “Pattern recommendation in task-oriented applications: A multi-objective perspective [application notes],” IEEE Comput. Intell. Mag., vol. 12, no. 3, pp. 43–53, Aug. 2017. doi: 10.1109/MCI.2017.2708578
|
[34] |
J. H. Zhao, Y. Xu, F. J. Luo, Z. Y. Dong, and Y. Y. Peng, “Power system fault diagnosis based on history driven differential evolution and stochastic time domain simulation,” Inf. Sci., vol. 275, pp. 13–29, Aug. 2014. doi: 10.1016/j.ins.2014.02.039
|
[35] |
Y. Tian, X. Y. Zhang, C. Wang, and Y. C. Jin, “An evolutionary algorithm for large-scale sparse multiobjective optimization problems,” IEEE Trans. EComput., vol. 24, no. 2, pp. 380–393, Apr. 2020.
|
[36] |
E. G. Talbi, “A unified view of parallel multi-objective evolutionary algorithms,” J. Parallel Distrib. Comput., vol. 133, pp. 349–358, Nov. 2019. doi: 10.1016/j.jpdc.2018.04.012
|
[37] |
W. Q. Ying, S. Y. Chen, B. Wu, Y. H. Xie, and Y. Wu, “Distributed parellel MOEA/D on spark,” in Proc. Int. Conf. Computing Intelligence and Information System, Nanjing, China, 2017, pp. 18–23.
|
[38] |
N. Kantour, S. Bouroubi, and D. Chaabane, “A parallel MOEA with criterion-based selection applied to the knapsack problem,” Appl. Soft Comput., vol. 80, pp. 358–373, Jul. 2019. doi: 10.1016/j.asoc.2019.04.005
|
[39] |
T. F. Qiu and G. Ju, “A selective migration parallel multi-objective genetic algorithm,” in Proc. Chinese Control and Decision Conf., Xuzhou, China, 2010, pp. 463–467.
|
[40] |
C. Sanhueza, F. Jiméenez, R. Berretta, and P. Moscato, “PasMoQAP: A parallel asynchronous memetic algorithm for solving the multi-objective quadratic assignment problem,” in Proc. IEEE Congr. Evolutionary Computation, Donostia, Spain, 2017, pp. 1103–1110.
|
[41] |
B. Derbel, A. Liefooghe, G. Marquet, and E. G. Talbi, “A fine-grained message passing MOEA/D,” in Proc. IEEE Congr. Evolutionary Computation, Sendai, Japan, 2015, pp. 1837–1844.
|
[42] |
B. Xu, Y. Zhang, D. W. Gong, and L. Wang, “A parallel multi-objective cooperative co-evolutionary algorithm with changing variables,” in Proc. Genetic and Evolutionary Computation Conf. Companion, Berlin, Germany, 2017, pp. 1888–1893.
|
[43] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. EComput., vol. 6, no. 2, pp. 182–197, Apr. 2002.
|
[44] |
Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evolutionary Computation, vol. 11, no. 6, pp. 712–731, Dec. 2007.
|
[45] |
T. J. Stanley and T. N. Mudge, “A parallel genetic algorithm for multiobjective microprocessor design,” in Proc. 6th Int. Conf. Genetic Algorithms, San Francisco, USA, 1995, pp. 597–604.
|
[46] |
R. Szmit and A. Barak, “Evolution strategies for a parallel multi-objective genetic algorithm,” in Proc. 2nd Annu. Conf. Genetic and Evolutionary Computation, Las Vegas, Nevada, USA, 2000, pp. 227–234.
|
[47] |
K. Deb and C. Myburgh, “A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables,” Eur. J. Oper. Res., vol. 261, no. 2, pp. 460–474, Sept. 2017. doi: 10.1016/j.ejor.2017.02.015
|
[48] |
B. D. Li, J. L. Li, K. Tang, and X. Yao, “Many-objective evolutionary algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, p. 13, Sept. 2015.
|
[49] |
M. Ester, H. P. Kriegel, J. Sander, and X. W. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proc. Int. Conf. Knowledge Discovery and Data Mining, Portland, Oregon, USA, 1996, pp. 226–231.
|
[50] |
X. Y. Zhang, Y. Tian, R. Cheng, and Y. C. Jin, “An efficient approach to nondominated sorting for evolutionary multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 19, no. 2, pp. 201–213, Apr. 2015.
|
[51] |
E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization,” in Proc. 5th Conf. Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece, 2001, pp. 95–100.
|
[52] |
R. C. Liu, R. Ren, J. Liu, and J. Liu, “A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems,” Appl. Soft Comput., vol. 89, p. 106120, Apr. 2020. doi: 10.1016/j.asoc.2020.106120
|
[53] |
Y. Tian, R. Cheng, X. Y. Zhang, and Y. C. Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
|
[54] |
B. Xue, M. J. Zhang, and W. N. Browne, “Particle swarm optimization for feature selection in classification: A multi-objective approach,” IEEE Trans. Cybern., vol. 43, no. 6, pp. 1656–1671, Dec. 2013. doi: 10.1109/TSMCB.2012.2227469
|
[55] |
X. Yao, “A review of evolutionary artificial neural networks,” Int. J. Intell. Syst., vol. 8, no. 4, pp. 539–567, Jan. 1993. doi: 10.1002/int.4550080406
|
[56] |
R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Proc. 20th Int. Conf. Very Large Data Bases, San Francisco, USA, 1994, pp. 487–499.
|
[57] |
E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance assessment of multiobjective optimizers: An analysis and review,” IEEE Trans. EComput., vol. 7, no. 2, pp. 117–132, Apr. 2003.
|
[58] |
Y. Tian, X. S. Xiang, X. Y. Zhang, R. Cheng, and Y. C. Jin, “Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems,” in Proc. IEEE Congr. Evolutionary Computation, Rio de Janeiro, Brazil, 2018, pp. 1–6.
|
[59] |
L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm for calculating hypervolume,” IEEE Trans. EComput., vol. 10, no. 1, pp. 29–38, Feb. 2006.
|
[60] |
J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm EComput., vol. 1, no. 1, pp. 3–18, Mar. 2011. doi: 10.1016/j.swevo.2011.02.002
|
[61] |
X. Xiang, Y. Tian, J. H. Xiao, and X. Y. Zhang, “A clustering-based surrogate-assisted multiobjective evolutionary algorithm for shelter location problem under uncertainty of road networks,” IEEE Trans. Industrial Informatics, vol. 16, no. 12, pp. 7544–7555, Dec. 2020. doi: 10.1109/TII.2019.2962137
|