IEEE/CAA Journal of Automatica Sinica
Citation: | W. Xue, X. L. Luan, S. Y. Zhao, and F. Liu, “A fusion Kalman filter and UFIR estimator using the influence function method,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 709–718, Apr. 2022. doi: 10.1109/JAS.2021.1004389 |
[1] |
Y. Zhou, Y. C. Soh, and J. X. Shen, “Speed estimation and nonmatched time-varying parameter identification for a DC motor with hybrid sliding-mode observer,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5539–5549, 2012.
|
[2] |
D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 51, no. 1, Article No. 176, Jan. 2021. doi: 10.1109/TSMC.2020.3041121
|
[3] |
M. Kordestani, A. A. Safavi, and M. Saif, “Recent survey of large-scale systems: Architectures, controller strategies, and industrial applications,” IEEE Systems Journal, pp. 1–14, 2021.
|
[4] |
Y. Tian and Z. Wang, “H∞ performance state estimation for static neural networks with time-varying delays via two improved inequalities,” IEEE Trans. Circuits and Systems Ⅱ:Express Briefs, vol. 68, no. 1, pp. 321–325, 2020.
|
[5] |
D. Ding, Z. Wang, and Q.-L. Han, “A set-membership approach to eventtriggered filtering for general nonlinear systems over sensor networks,” IEEE Trans. Automatic Control, vol. 65, no. 4, pp. 1792–1799, 2019.
|
[6] |
R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Journal of Basic Engineering, vol. 83, pp. 95–108, 1961.
|
[7] |
F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. OrlowskaKowalska, and S. Katsura, “Industrial applications of the kalman filter: A review,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5458–5471, 2013. doi: 10.1109/TIE.2012.2236994
|
[8] |
R. Antonello, K. Ito, and R. Oboe, “Acceleration measurement drift rejection in motion control systems by augmented-state kinematic kalman filter,” IEEE Trans. Industrial Electronics, vol. 63, no. 3, pp. 1953–1961, 2015.
|
[9] |
F. Auger, J. M. Guerrero, M. Hilairet, S. Katsura, E. Monmasson, and T. Orlowska-Kowalska, “Introduction to the special section on industrial applications and implementation issues of the kalman filter,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4165–4168, 2012. doi: 10.1109/TIE.2012.2194411
|
[10] |
V. Smidl and A. Quinn, “Variational bayesian filtering,” IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 5020–5030, 2008. doi: 10.1109/TSP.2008.928969
|
[11] |
S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. the IEEE, vol. 92, no. 3, pp. 401–422, 2004. doi: 10.1109/JPROC.2003.823141
|
[12] |
H. Cox, “On the estimation of state variables and parameters for noisy dynamic systems,” IEEE Trans. Automatic Control, vol. 9, no. 1, pp. 5–12, 1964. doi: 10.1109/TAC.1964.1105635
|
[13] |
G. Garcia, S. Tarbouriech, and P. L. Peres, “Robust kalman filtering for uncertain discrete-time linear systems,” Int. Journal of Robust and Nonlinear Control:IFAC-Affiliated Journal, vol. 13, no. 13, pp. 1225–1238, 2003. doi: 10.1002/rnc.838
|
[14] |
M. Karasalo and X. Hu, “An optimization approach to adaptive kalman filtering,” Automatica, vol. 47, no. 8, pp. 1785–1793, 2011. doi: 10.1016/j.automatica.2011.04.004
|
[15] |
Y. S. Shmaliy, “An iterative Kalman-like algorithm ignoring noise and initial conditions,” IEEE Trans. Signal Processing, vol. 59, no. 6, pp. 2465–2473, 2011. doi: 10.1109/TSP.2011.2129516
|
[16] |
Y. S. Shmaliy, “Unbiased FIR filtering of discrete-time polynomial state-space models,” IEEE Trans. Signal Processing, vol. 57, no. 4, pp. 1241–1249, 2008.
|
[17] |
C. K. Ahn and Y. S. Shmaliy, “New receding horizon FIR estimator for blind smart sensing of velocity via position measurements,” IEEE Trans. Circuits and Systems Ⅱ:Express Briefs, vol. 65, no. 1, pp. 135–139, 2017.
|
[18] |
Y. S. Shmaliy, J. Munoz-Diaz, and L. Arceo-Miquel, “Optimal horizons for a one-parameter family of unbiased FIR filters,” Digital Signal Processing, vol. 18, no. 5, pp. 739–750, 2008. doi: 10.1016/j.dsp.2007.10.002
|
[19] |
A. Jazwinski, “Limited memory optimal filtering,” IEEE Trans. Automatic Control, vol. 13, no. 5, pp. 558–563, 1968. doi: 10.1109/TAC.1968.1098981
|
[20] |
A. H. Jazwinski, “Stochastic Processes and Filtering Theory”. Massachusetts, USA: Courier Corporation, 2007.
|
[21] |
S. Zhao, Y. S. Shmaliy, and F. Liu, “Fast computation of discrete optimal FIR estimates in white gaussian noise,” IEEE Signal Processing Letters, vol. 22, no. 6, pp. 718–722, 2014.
|
[22] |
Y. S. Shmaliy, S. Zhao, and C. K. Ahn, “Unbiased finite impluse response filtering: An iterative alternative to Kalman filtering ignoring noise and initial conditions,” IEEE Control Systems Magazine, vol. 37, no. 5, pp. 70–89, 2017. doi: 10.1109/MCS.2017.2718830
|
[23] |
Y. S. Shmaliy, F. Lehmann, S. Zhao, and C. K. Ahn, “Comparing robustness of the Kalman, H∞, and UFIR filters,” IEEE Trans. Signal Processing, vol. 66, no. 13, pp. 3447–3458, 2018. doi: 10.1109/TSP.2018.2833811
|
[24] |
S. Soltani, M. Kordestani, P. K. Aghaee, and M. Saif, “Improved estimation for well-logging problems based on fusion of four types of kalman filters,” IEEE Trans. Geoscience and Remote Sensing, vol. 56, no. 2, pp. 647–654, 2017.
|
[25] |
M. Kordestani, A. Chibakhsh, and M. Saif, “A control oriented cybersecure strategy based on multiple sensor fusion,” in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), 2019, pp. 1875–1881.
|
[26] |
S. Y. Cho and B. D. Kim, “Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system,” Automatica, vol. 44, no. 8, pp. 2040–2047, 2008. doi: 10.1016/j.automatica.2007.11.009
|
[27] |
S. Zhao, Y. S. Shmaliy, P. Shi, and C. K. Ahn, “Fusion Kalman/UFIR filter for state estimation with uncertain parameters and noise statistics,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3075–3083, 2016.
|
[28] |
S. H. You, C. K. Ahn, Y. S. Shmaliy, and S. Zhao, “Fusion Kalman and weighted UFIR state estimator with improved accuracy,” IEEE Trans. Industrial Electronics, vol. 67, no. 12, pp. 10 713–10 722, 2019.
|
[29] |
S. H. You, C. K. Ahn, S. Zhao, and Y. S. Shmaliy, “Frobenius normbased unbiased FIR fusion filtering for wireless sensor networks,” IEEE Trans. Industrial Electronics, vol. 69, no. 2, pp. 1867–1876, Feb. 2022.
|
[30] |
Y. Xu, Y. S. Shmaliy, T. Shen, D. Chen, M. Sun, and Y. Zhuang, “INS/UWB-based quadrotor localization under colored measurement noise,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6384–6392, 2021. doi: 10.1109/JSEN.2020.3038242
|
[31] |
P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in Proc, Int. Conf. Machine Learning, PMLR, 2017, pp. 1885–1894.
|
[32] |
Y. S. Shmaliy and O. Ibarra-Manzano, “Time-variant linear optimal finite impulse response estimator for discrete state-space models,” Int. Journal of Adaptive Control and Signal Processing, vol. 26, no. 2, pp. 95–104, 2012. doi: 10.1002/acs.1274
|
[33] |
S. Zhao, Y. S. Shmaliy, and F. Liu, “Fast Kalman-like optimal unbiased FIR filtering with applications,” IEEE Trans. Signal Processing, vol. 64, no. 9, pp. 2284–2297, 2016. doi: 10.1109/TSP.2016.2516960
|
[34] |
Y. S. Shmaliy, “Linear optimal FIR estimation of discrete time-invariant state-space models,” IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3086–3096, 2010. doi: 10.1109/TSP.2010.2045422
|
[35] |
R. D. Cook and S. Weisberg, Residuals and Influence in Regression. New York, USA: Chapman and Hall, 1982.
|
[36] |
J. R. Magnus, “On the concept of matrix derivative,” Journal of Multivariate Analysis, vol. 101, no. 9, pp. 2200–2206, 2010. doi: 10.1016/j.jmva.2010.05.005
|
[37] |
S. Zhao, Y. S. Shmaliy, C. K. Ahn, and F. Liu, “Self-tuning unbiased finite impulse response filtering algorithm for processes with unknown measurement noise covariance,” IEEE Trans. Control Systems Technology, vol. 29, no. 3, pp. 1372–1379, May 2021.
|