IEEE/CAA Journal of Automatica Sinica
Citation: | L. G. Wu, J. Liu, S. Vazquez, and S. K. Mazumder, “Sliding mode control in power converters and drives: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 392–406, Mar. 2022. doi: 10.1109/JAS.2021.1004380 |
[1] |
E. Shigin, “On improvement of transient processes with the help of correction networks with varying parameters,” Automat. Remote Contr., no. 4, pp. 299–304, 1958.
|
[2] |
S. Emelyanov, “The use of nonlinear corrective devices of the key type to improve the behavior of second order control systems,” Automatic Remote Control, vol. 7, pp. 844–859, 1959.
|
[3] |
U. Itkis, Control Systems of Variable Structure. New York: Wiley, 1976.
|
[4] |
V. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automatic Control, vol. 22, no. 2, pp. 212–222, 1977. doi: 10.1109/TAC.1977.1101446
|
[5] |
C.-C. Wen and C.-C. Cheng, “Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability,” Journal of the Franklin Institute, vol. 345, no. 8, pp. 926–941, 2008. doi: 10.1016/j.jfranklin.2008.06.003
|
[6] |
H. H. Choi, “LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Trans. Automatic Control, vol. 52, no. 4, pp. 736–742, 2007. doi: 10.1109/TAC.2007.894543
|
[7] |
J. Yang, S. Li, and X. Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Trans. Industrial Electronics, vol. 60, no. 1, pp. 160–169, 2012.
|
[8] |
W.-J. Cao and J.-X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Trans. Automatic Control, vol. 49, no. 8, pp. 1355–1360, 2004. doi: 10.1109/TAC.2004.832658
|
[9] |
Y. Jiang, D. Clements, and T. Hesketh, “Rejection of unmatched disturbances in sliding mode control,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 3473–3477, 1996. doi: 10.1016/S1474-6670(17)58215-4
|
[10] |
V. Utkin, J. Gulder, and J. Shi, Sliding Mode Control in Electromechanical Systems. Taylor & Francis Group, 2009.
|
[11] |
X. Yu and O. Kaynak, “Sliding-mode control with soft computing: A survey,” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3275–3285, 2009. doi: 10.1109/TIE.2009.2027531
|
[12] |
A. Sabanovic, L. M. Fridman, and S. K. Spurgeon, Variable Structure Systems: From Principles to Implementation. IET, 2004, vol. 66.
|
[13] |
O. Kaynak, K. Erbatur, and M. Ertugnrl, “The fusion of computationally intelligent methodologies and sliding-mode control-a survey,” IEEE Trans. Industrial Electronics, vol. 48, no. 1, pp. 4–17, 2001. doi: 10.1109/41.904539
|
[14] |
V. M. Panchade, R. H. Chile, and B. M. Patre, “A survey on sliding mode control strategies for induction motors,” Annual Reviews in Control, vol. 37, no. 2, pp. 289–307, 2013. doi: 10.1016/j.arcontrol.2013.09.008
|
[15] |
D. A. Haghighi and S. Mobayen, “Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems,” ISA Transactions, vol. 75, pp. 216–225, 2018. doi: 10.1016/j.isatra.2018.02.006
|
[16] |
G. Bartolini, A. Pisano, E. Punta, and E. Usai, “A survey of applications of second-order sliding mode control to mechanical systems,” Int. Journal of Control, vol. 76, no. 9-10, pp. 875–892, 2003. doi: 10.1080/0020717031000099010
|
[17] |
Y. Shtessel, C. Edwards, L. Fridman, A. Levant et al., Sliding Mode Control and Observation. Springer, 2014, vol. 10.
|
[18] |
L. Wu, P. Shi, and X. Su, Sliding Mode Control of Uncertain Parameterswitching Hybrid Systems. John Wiley & Sons, 2014.
|
[19] |
X. Xi, S. Mobayen, H. Ren, and S. Jafari, “Robust finite-time synchronization of a class of chaotic systems via adaptive global sliding mode control,” Journal of Vibration and Control, vol. 24, no. 17, pp. 3842–3854, 2018. doi: 10.1177/1077546317713532
|
[20] |
S. Mobayen and F. Tchier, “Nonsingular fast terminal sliding-mode stabilizer for a class of uncertain nonlinear systems based on disturbance observer,” Scientia Iranica, vol. 24, no. 3, pp. 1410–1418, 2017. doi: 10.24200/sci.2017.4123
|
[21] |
S.-C. Tan, Y.-M. Lai, and C.-K. Tse, Sliding Mode Control of Switching Power Converters: Techniques and Implementation. CRC Press, 2011.
|
[22] |
J. Holtz and X. Qi, “Optimal control of medium-voltage drives – An overview,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5472–5481, 2013. doi: 10.1109/TIE.2012.2230594
|
[23] |
Y. Sun, Y. Wang, Z. Wei, G. Sun, and X. Wu, “Robust H∞ load frequency control of multi-area power system with time delay: A sliding mode control approach,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 610–617, 2018. doi: 10.1109/JAS.2017.7510649
|
[24] |
G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors-a survey,” IEEE Trans. Industrial Electronics, vol. 51, no. 4, pp. 744–757, 2004. doi: 10.1109/TIE.2004.831717
|
[25] |
J. I. Leon, S. Vazquez, and L. G. Franquelo, “Multilevel converters: Control and modulation techniques for their operation and industrial applications,” Proc. the IEEE, vol. 105, no. 11, pp. 2066–2081, Nov. 2017. doi: 10.1109/JPROC.2017.2726583
|
[26] |
X. Yu and O. Kaynak, “Sliding mode control made smarter: A computational intelligence perspective,” IEEE Systems,Man,and Cybernetics Magazine, vol. 3, no. 2, pp. 31–34, 2017. doi: 10.1109/MSMC.2017.2663559
|
[27] |
C. M. Martínez and D. Cao, “Integrated energy management for electrified vehicles,” Ihorizon-Enabled Energy Management for Electrified Vehicles, pp. 15–75, 2019.
|
[28] |
A. Djoudi, H. Chekireb, S. Bacha, et al, “Low-cost sliding mode control of WECS based on DFIG with stability analysis,” Turkish Journal of Electrical Engineering &Computer Sciences, vol. 23, no. 6, pp. 1698–1714, 2015.
|
[29] |
V. Pande, U. Mate, and S. Kurode, “Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG,” Electric Power Systems Research, vol. 100, pp. 73–81, 2013. doi: 10.1016/j.jpgr.2013.03.001
|
[30] |
C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Applications. CRC Press, 1998.
|
[31] |
H. Lee and V. I. Utkin, “Chattering suppression methods in sliding mode control systems,” Annual Reviews in Control, vol. 31, no. 2, pp. 179–188, 2007. doi: 10.1016/j.arcontrol.2007.08.001
|
[32] |
I. Boiko and L. Fridman, “Analysis of chattering in continuous sliding-mode controllers,” IEEE Trans. Automatic Control, vol. 50, no. 9, pp. 1442–1446, 2005. doi: 10.1109/TAC.2005.854655
|
[33] |
Y. Feng, F. Han, and X. Yu, “Chattering free full-order sliding-mode control,” Automatica, vol. 50, no. 4, pp. 1310–1314, 2014. doi: 10.1016/j.automatica.2014.01.004
|
[34] |
P. V. Suryawanshi, P. D. Shendge, and S. B. Phadke, “A boundary layer sliding mode control design for chatter reduction using uncertainty and disturbance estimator,” Int. Journal of Dynamics and Control, vol. 4, no. 4, pp. 456–465, 2016. doi: 10.1007/s40435-015-0150-9
|
[35] |
S. Chakrabarty and B. Bandyopadhyay, “A generalized reaching law for discrete time sliding mode control,” Automatica, vol. 52, pp. 83–86, 2015. doi: 10.1016/j.automatica.2014.10.124
|
[36] |
S. Wen, M. Z. Chen, Z. Zeng, X. Yu, and T. Huang, “Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 47, no. 1, pp. 24–32, 2017. doi: 10.1109/TSMC.2016.2564930
|
[37] |
N. Bouarroudj, D. Boukhetala, and F. Boudjema, “Sliding-mode controller based on fractional order calculus for a class of nonlinear systems,” Int. Journal of Electrical &Computer Engineering, vol. 6, no. 5, pp. 2239–2250, 2016.
|
[38] |
J. J. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surface with application to robot manipulator,” Int. Journal of Control, vol. 38, no. 2, pp. 931–938, 1983.
|
[39] |
W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 117–122, 1995. doi: 10.1109/41.370376
|
[40] |
G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding mode control,” IEEE Trans. Automatic Control, vol. 43, no. 2, pp. 241–246, 1998. doi: 10.1109/9.661074
|
[41] |
L. Wong, F. Leung, and P. Tam, “A chattering elimination algorithm for sliding mode control of uncertain non-linear systems,” Mechatronics, vol. 8, no. 7, pp. 765–775, 1998. doi: 10.1016/S0957-4158(98)00031-2
|
[42] |
A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. Journal of Control, vol. 58, no. 6, pp. 1247–1263, 1993. doi: 10.1080/00207179308923053
|
[43] |
G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding mode control,” IEEE Trans. Automatic Control, vol. 43, no. 2, pp. 241–246, 1998. doi: 10.1109/9.661074
|
[44] |
G. Bartolini, A. Pisano, and E. Usai, “Second-order sliding-mode control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783–1790, 2002. doi: 10.1016/S0005-1098(02)00081-X
|
[45] |
S. Laghrouche, F. Plestan, and A. Glumineau, “Higher order sliding mode control based on integral sliding mode,” Automatica, vol. 43, no. 3, pp. 531–537, 2007. doi: 10.1016/j.automatica.2006.09.017
|
[46] |
A. Levant, “Principles of 2-sliding mode design,” Automatica, vol. 43, no. 4, pp. 576–586, 2007. doi: 10.1016/j.automatica.2006.10.008
|
[47] |
R.-J. Lian, “Adaptive self-organizing fuzzy sliding-mode radial basis-function neural-network controller for robotic systems,” IEEE Trans. Industrial Electronics, vol. 61, no. 3, pp. 1493–1503, 2014. doi: 10.1109/TIE.2013.2258299
|
[48] |
J. Yu, J. Liu, Z. Wu, and H. Fang, “Depth control of a bioinspired robotic dolphin based on sliding-mode fuzzy control method,” IEEE Trans. Industrial Electronics, vol. 65, no. 3, pp. 2429–2438, 2018. doi: 10.1109/TIE.2017.2745451
|
[49] |
D. Qian and G. Fan, “Neural-network-based terminal sliding mode control for frequency stabilization of renewable power systems,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 706–717, 2018. doi: 10.1109/JAS.2018.7511078
|
[50] |
S.-C. Tan, Y. Lai, C. K. Tse, and M. K. Cheung, “Adaptive feedforward and feedback control schemes for sliding mode controlled power converters,” IEEE Trans. Power Electronics, vol. 21, no. 1, pp. 182–192, 2006. doi: 10.1109/TPEL.2005.861191
|
[51] |
Y. Yin, J. Liu, S. Vazquez, L. Wu, and L. G. Franquelo, “Disturbance observer based second order sliding mode control for dc-dc buck converters,” in Proc. IECON 2017-Conf. of the IEEE Industrial Electronics Society, 2017, pp. 7117–7122.
|
[52] |
L. Malesani, R. G. Spiazzi, and P. Tenti, “Performance optimization of cuk converters by sliding-mode control,” IEEE Trans. Power Electronics, vol. 10, no. 3, pp. 302–309, May 1995. doi: 10.1109/63.387995
|
[53] |
S. K. Mazumder, A. H. Nayfeh, and A. Borojevic, “Robust control of parallel dc-dc buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes,” IEEE Trans. Power Electronics, vol. 17, no. 3, pp. 428–437, May 2002. doi: 10.1109/TPEL.2002.1004251
|
[54] |
A. Mehta and B. Naik, Sliding Mode Controllers for Power Electronic Converters. Springer, 2019.
|
[55] |
V. M. Nguyen and C. Lee, “Indirect implementations of sliding-mode control law in buck-type converters,” in Proceedings Applied Power Electronics Conf. and Exposition (APEC), vol. 1. IEEE, 1996, pp. 111–115.
|
[56] |
S. K. Mazumder and S. L. Kamisetty, “Design and experimental validation of a multiphase VRM controller,” IEE Proceedings - Electric Power Applications, vol. 152, no. 5, pp. 1076–1084, 2005. doi: 10.1049/ip-epa:20045165
|
[57] |
S.-C. Tan, Y.-M. Lai, and C. K. Tse, “A unified approach to the design of pwm-based sliding-mode voltage controllers for basic dc-dc converters in continuous conduction mode,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 53, no. 8, pp. 1816–1827, 2006. doi: 10.1109/TCSI.2006.879052
|
[58] |
S. C. Tan, Y. M. Lai, C. K. Tse, L. Martinez-Salamero, and C. K. Wu, “A fast-response sliding-mode controller for boost-type converters with a wide range of operating conditions,” IEEE Trans. Industrial Electronics, vol. 54, no. 6, pp. 3276–3286, Dec. 2007. doi: 10.1109/TIE.2007.905969
|
[59] |
S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, “Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47–61, Mar. 2015. doi: 10.1109/MIE.2014.2376976
|
[60] |
Y. Yin, S. Vazquez, A. Marquez, J. Liu, J. I. Leon, L. Wu, and L. G. Franquelo, “Observer-based sliding-mode control for grid-connected power converters under unbalanced grid conditions,” IEEE Trans. Industrial Electronics, vol. 69, no. 1, pp. 517–527, 2022. doi: 10.1109/TIE.2021.3050387
|
[61] |
R. Wang, Q. Sun, D. Ma, and Z. Liu, “The small-signal stability analysis of the droop-controlled converter in electromagnetic timescale,” IEEE Trans. Sustainable Energy, vol. 10, no. 3, pp. 1459–1469, 2019. doi: 10.1109/TSTE.2019.2894633
|
[62] |
W. Hu, C. Ruan, H. Nian, and D. Sun, “Zero-sequence current suppression strategy with common mode voltage control for open-end winding PMSM drives with common DC bus,” IEEE Trans. Industrial Electronics, DOI: 10.1109/TIE.2020.2988221.
|
[63] |
Q. Sun, R. Han, H. Zhang, J. Zhou, and J. M. Guerrero, “A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3006–3019, 2015. doi: 10.1109/TSG.2015.2412779
|
[64] |
S. Vazquez, A. Marquez, R. Aguilera, D. Quevedo, J. I. Leon, and L. G. Franquelo, “Predictive optimal switching sequence direct power control for grid-connected power converters,” IEEE Trans. Industrial Electronics, vol. 62, no. 4, pp. 2010–2020, Apr. 2015. doi: 10.1109/TIE.2014.2351378
|
[65] |
J. Silva, “Sliding mode control of boost-type unity-power-factor PWM rectifiers,” IEEE Trans. Industrial Electronics, vol. 46, no. 3, pp. 594–603, 1999. doi: 10.1109/41.767067
|
[66] |
J. Liu, S. Vazquez, L. Wu, A. Marquez, H. Gao, and L. G. Franquelo, “Extended state observer-based sliding-mode control for three-phase power converters,” IEEE Trans. Industrial Electronics, vol. 64, no. 1, pp. 22–31, 2017. doi: 10.1109/TIE.2016.2610400
|
[67] |
Y. Yin, W. Luo, J. Liu, S. Vazquez, L. Wu, and L. G. Franquelo, “Sliding mode control of three-phase power converters with disturbance attenuation performance,” in Proc. 11th IEEE Int. Conf. on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG). IEEE, 2017, pp. 270–275.
|
[68] |
Y. Yin, J. Liu, J. A. Sanchez, L. Wu, S. Vazquez, J. I. Leon, and L. G. Franquelo, “Observer-based adaptive sliding mode control of NPC converters: an RBF neural network approach,” IEEE Trans. Power Electronics, DOI: 10.1109/TPEL.2018.2853093.
|
[69] |
J. Hu, L. Shang, Y. He, and Z. Zhu, “Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 210–222, 2011. doi: 10.1109/TPEL.2010.2057518
|
[70] |
S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young, A. Marquez, and P. Zanchetta, “Model predictive control: A review of its applications in power electronics,” IEEE Industrial Electronics Magazine, vol. 8, no. 1, pp. 16–31, 2014. doi: 10.1109/MIE.2013.2290138
|
[71] |
M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Industrial Electronics, vol. 45, no. 5, pp. 691–703, Oct. 1998. doi: 10.1109/41.720325
|
[72] |
S. Vazquez, J. A. Sanchez, J. M. Carrasco, J. I. Leon, and E. Galvan, “A model-based direct power control for three-phase power converters,” IEEE Trans. Industrial Electronics, vol. 55, no. 4, pp. 1647–1657, Apr. 2008. doi: 10.1109/TIE.2008.917113
|
[73] |
M. Malinowski, M. Jasiński, and M. P. Kazmierkowski, “Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM),” IEEE Trans. Industrial Electronics, vol. 51, no. 2, pp. 447–454, 2004. doi: 10.1109/TIE.2004.825278
|
[74] |
S. Bacha, I. Munteanu, A. I. Bratcu, et al, “Power electronic converters modeling and control,” Advanced Textbooks in Control and Signal Processing, vol. 454, Article No. 454, 2014.
|
[75] |
D. M. Vilathgamuwa, S. R. Wall, and R. D. Jackson, “Variable structure control of voltage sourced reversible rectifiers,” IEE Proceedings - Electric Power Applications, vol. 143, no. 1, pp. 18–24, Jan. 1996. doi: 10.1049/ip-epa:19960039
|
[76] |
V. F. Pires and J. F. Silva, “Three-phase single-stage four-switch PFC buck-boost-type rectifier,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 444–453, Apr. 2005. doi: 10.1109/TIE.2005.843911
|
[77] |
S. K. Mazumder, “A novel discrete control strategy for independent stabilization of parallel three-phase boost converters by combining space-vector modulation with variable-structure control,” IEEE Trans. Power Electronics, vol. 18, no. 4, pp. 1070–1083, Jul. 2003. doi: 10.1109/TPEL.2003.813770
|
[78] |
K. Xing, F. C. Lee, D. Borojevic, Z. Ye, and S. Mazumder, “Interleaved PWM with discontinuous space-vector modulation,” IEEE Trans. Power Electronics, vol. 14, no. 5, pp. 906–917, Sep. 1999. doi: 10.1109/63.788496
|
[79] |
S. K. Mazumder, “Continuous and discrete variable-structure controls for parallel three-phase boost rectifier,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 340–354, Apr. 2005. doi: 10.1109/TIE.2005.843921
|
[80] |
C.-T. Pan and T.-C. Chen, “Modelling and analysis of a three phase PWM ac-dc convertor without current sensor,” IEE Proceedings B Electric Power Applications, vol. 140, no. 3, pp. 201–208, 1993. doi: 10.1049/ip-b.1993.0024
|
[81] |
W.-C. Lee, T.-K. Lee, and D.-S. Hyun, “Comparison of single-sensor current control in the dc link for three-phase voltage-source PWM converters,” IEEE Trans. Industrial Electronics, vol. 48, no. 3, pp. 491–505, 2001. doi: 10.1109/41.925576
|
[82] |
D.-C. Lee and D.-S. Lim, “AC voltage and current sensorless control of three-phase pwm rectifiers,” IEEE Trans. Power Electronics, vol. 17, no. 6, pp. 883–890, 2002. doi: 10.1109/TPEL.2002.805592
|
[83] |
S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Industrial Electronics, vol. 64, no. 2, pp. 935–947, 2017. doi: 10.1109/TIE.2016.2625238
|
[84] |
S. Vazquez, R. P. Aguilera, P. Acuna, J. Pou, J. I. Leon, L. G. Franquelo, and V. G. Agelidis, “Model predictive control for single-phase npc converters based on optimal switching sequences,” IEEE Trans. Industrial Electronics, vol. 63, no. 12, pp. 7533–7541, 2016. doi: 10.1109/TIE.2016.2594227
|
[85] |
H. H. Choi, N. T.-T. Vu, and J.-W. Jung, “Digital implementation of an adaptive speed regulator for a PMSM,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 3–8, 2011. doi: 10.1109/TPEL.2010.2055890
|
[86] |
S. Li and Z. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia,” IEEE Trans. Industrial Electronics, vol. 56, no. 8, pp. 3050–3059, 2009. doi: 10.1109/TIE.2009.2024655
|
[87] |
C.-S. Chen, “TSK-type self-organizing recurrent-neural-fuzzy control of linear microstepping motor drives,” IEEE Trans. Power Electronics, vol. 25, no. 9, pp. 2253–2265, 2010. doi: 10.1109/TPEL.2010.2046648
|
[88] |
T. Bernardes, V. F. Montagner, H. A. Gründling, and H. Pinheiro, “Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine,” IEEE Trans. Industrial Electronics, vol. 61, no. 4, pp. 1679–1691, 2014. doi: 10.1109/TIE.2013.2267700
|
[89] |
C. L. Baratieri and H. Pinheiro, “New variable gain super-twisting sliding mode observer for sensorless vector control of nonsinusoidal back-EMF PMSM,” Control Engineering Practice, vol. 52, pp. 59–69, 2016. doi: 10.1016/j.conengprac.2016.04.003
|
[90] |
S. E. Ryvkin and E. P. Lever, Sliding Mode Control for Synchronous Electric Drives. CRC Press, 2011.
|
[91] |
F. Mohd Zaihidee, S. Mekhilef, and M. Mubin, “Robust speed control of PMSM using sliding mode control (SMC)-a review,” Energies, vol. 12, no. 9, Article No. 1669, 2019. doi: 10.3390/en12091669
|
[92] |
W. Xu, A. K. Junejo, Y. Liu, and M. R. Islam, “Improved continuous fast terminal sliding mode control with extended state observer for speed regulation of PMSM drive system,” IEEE Trans. Vehicular Technology, vol. 68, no. 11, pp. 10465–10476, 2019. doi: 10.1109/TVT.2019.2926316
|
[93] |
A. K. Junejo, W. Xu, C. Mu, M. M. Ismail, and Y. Liu, “Adaptive speed control of PMSM drive system based a new sliding-mode reaching law,” IEEE Trans. Power Electronics, vol. 35, no. 11, pp. 12110–12121, 2020. doi: 10.1109/TPEL.2020.2986893
|
[94] |
X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for pmsm system using sliding-mode control and disturbance compensation techniques,” IEEE Trans. Power Electronics, vol. 28, no. 3, pp. 1358–1365, 2013. doi: 10.1109/TPEL.2012.2206610
|
[95] |
F.-J. Lin and S.-L. Chiu, “Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives,” IEE Proceedings-Control Theory and Applications, vol. 145, no. 1, pp. 63–72, 1998. doi: 10.1049/ip-cta:19981683
|
[96] |
C. Lascu, I. Boldea, and F. Blaabjerg, “Variable-structure direct torque control-a class of fast and robust controllers for induction machine drives,” IEEE Trans. Industrial Electronics, vol. 51, no. 4, pp. 785–792, 2004. doi: 10.1109/TIE.2004.831724
|
[97] |
C. Lascu, I. Boldea, and F. Blaabjer, “Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives,” in Proc. IECON 39th Annual Conf. of the IEEE Industrial Electronics Society, Nov 2013, pp. 3171–3176.
|
[98] |
M. P. Kazmierkowski, L. G. Franquelo, J. Rodriguez, M. A. Perez, and J. I. Leon, “High-performance motor drives,” IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 6–26, Sept. 2011. doi: 10.1109/MIE.2011.942173
|
[99] |
E. Zerdali and M. Barut, “The comparisons of optimized extended kalman filters for speed-sensorless control of induction motors,” IEEE Trans. Industrial Electronics, vol. 64, no. 6, pp. 4340–4351, 2017. doi: 10.1109/TIE.2017.2674579
|
[100] |
G. Yang and T.-H. Chin, “Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive,” IEEE Trans. Industry Applications, vol. 29, no. 4, pp. 820–825, 1993. doi: 10.1109/28.232001
|
[101] |
S. Chi, Z. Zhang, and L. Xu, “Sliding-mode sensorless control of directdrive PM synchronous motors for washing machine applications,” IEEE Trans. Industry Applications, vol. 45, no. 2, pp. 582–590, 2009. doi: 10.1109/TIA.2009.2013545
|
[102] |
F. Nollet, T. Floquet, and W. Perruquetti, “Observer-based second order sliding mode control laws for stepper motors,” Control Engineering Practice, vol. 16, no. 4, pp. 429–443, 2008. doi: 10.1016/j.conengprac.2007.05.008
|
[103] |
Y. Shtessel, S. Baev, and H. Biglari, “Unity power factor control in three-phase AC/DC boost converter using sliding modes,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3874–3882, 2008. doi: 10.1109/TIE.2008.2003203
|
[104] |
M. Hamida, J. De Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Industrial Electronics, vol. 60, no. 2, pp. 739–748, 2013. doi: 10.1109/TIE.2012.2206355
|
[105] |
G. Wang, T. Li, G. Zhang, X. Gui, and D. Xu, “Position estimation error reduction using recursive-least-square adaptive filter for model-based sensorless interior permanent-magnet synchronous motor drives,” IEEE Trans. Industrial Electronics, vol. 61, no. 9, pp. 5115–5125, 2014. doi: 10.1109/TIE.2013.2264791
|
[106] |
M. Comanescu and L. Xu, “Sliding-mode MRAS speed estimators for sensorless vector control of induction machine,” IEEE Trans. Industrial Electronics, vol. 53, no. 1, pp. 146–153, 2006. doi: 10.1109/TIE.2005.862303
|
[107] |
J. Li, L. Xu, and Z. Zhang, “An adaptive sliding-mode observer for induction motor sensorless speed control,” IEEE Trans. Industry Applications, vol. 41, no. 4, pp. 1039–1046, 2005. doi: 10.1109/TIA.2005.851585
|
[108] |
G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives-a review,” IEEE Trans. Industrial Electronics, vol. 67, no. 7, pp. 5830–5842, 2019.
|