A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 5
May  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
W. H. Li, H. G. Zhang, Y. Zhou, and Y. C. Wang, “Bipartite formation tracking for multi-agent systems using fully distributed dynamic edge-event-triggered protocol,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 847–853, May 2022. doi: 10.1109/JAS.2021.1004377
Citation: W. H. Li, H. G. Zhang, Y. Zhou, and Y. C. Wang, “Bipartite formation tracking for multi-agent systems using fully distributed dynamic edge-event-triggered protocol,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 847–853, May 2022. doi: 10.1109/JAS.2021.1004377

Bipartite Formation Tracking for Multi-Agent Systems Using Fully Distributed Dynamic Edge-Event-Triggered Protocol

doi: 10.1109/JAS.2021.1004377
Funds:  This work was supported by National Key R & D Program of China (2018YFA0702200), the National Natural Science Foundation of China (61627809, 62173080), and Liaoning Revitalization Talents Program (XLYC1801005)
More Information
  • In this study, the bipartite time-varying output formation tracking problem for heterogeneous multi-agent systems (MASs) with multiple leaders and switching communication networks is considered. Note that the switching communication networks may be connected or disconnected. To address this problem, a novel reduced-dimensional observer-based fully distributed asynchronous dynamic edge-event-triggered output feedback control protocol is developed, and the Zeno behavior is ruled out. The theoretical analysis gives the admissible switching frequency and switching width under the proposed control protocol. Different from the existing works, the control protocol reduces the dimension of information to be transmitted between neighboring agents. Moreover, since an additional positive internal dynamic variable is introduced into the triggering functions, the control protocol can guarantee a larger inter-event time interval compared with previous results. Finally, a simulation example is given to verify the effectiveness and performance of the theoretical result.

     

  • loading
  • [1]
    Y. H. Wang, Y. F. Liu, and Z. Wang, “Theory and experiments on enclosing control of multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1677–1685, Oct. 2021. doi: 10.1109/JAS.2021.1004138
    [2]
    X. W. Li, Z. Y. Sun, Y. Tang, and H. R. Karimi, “Adaptive event-triggered consensus of multiagent systems on directed graphs,” IEEE Trans. Automat. Contr., vol. 66, no. 4, pp. 1670–1685, Apr. 2021. doi: 10.1109/TAC.2020.3000819
    [3]
    Q. L. Wei, X. Wang, X. N. Zhong, and N. Q. Wu, “Consensus control of leader-following multi-agent systems in directed topology with heterogeneous disturbances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 423–431, Feb. 2021. doi: 10.1109/JAS.2021.1003838
    [4]
    B. D. Ning, Q.-L. Han, and Z. Y. Zuo, “Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach,” IEEE Trans. Automat. Contr., vol. 66, no. 6, pp. 2739–2745, Jun. 2021. doi: 10.1109/TAC.2020.3008125
    [5]
    R. Wang, X. W. Dong, Q. D. Li, and Z. Ren, “Distributed time-varying formation control for linear swarm systems with switching topologies using an adaptive output-feedback approach,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 12, pp. 2664–2675, Dec. 2019. doi: 10.1109/TSMC.2017.2765203
    [6]
    Y. Zhao, Q. X. Duan, G. H. Wen, D. Zhang, and B. H. Wang, “Time-varying formation for general linear multiagent systems over directed topologies: A fully distributed adaptive technique,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 1, pp. 532–541, Jan. 2021. doi: 10.1109/TSMC.2018.2877818
    [7]
    B. Cheng, Z. Z. Wu, and Z. K. Li, “Distributed edge-based event-triggered formation control,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1241–1252, Mar. 2021. doi: 10.1109/TCYB.2019.2910131
    [8]
    X. H. Ge and Q.-L. Han, “Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism,” IEEE Trans. Industr. Electron., vol. 64, no. 10, pp. 8118–8127, Oct. 2017. doi: 10.1109/TIE.2017.2701778
    [9]
    H. G. Zhang, J. Duan, Y. C. Wang, and Z. Y. Gao, “Bipartite fixed-time output consensus of heterogeneous linear multiagent systems,” IEEE Trans. Cybern., vol. 51, no. 2, pp. 548–557, Feb. 2021. doi: 10.1109/TCYB.2019.2936009
    [10]
    X. M. Liu, S. S. Ge, C. H. Goh, and Y. N. Li, “Event-triggered coordination for formation tracking control in constrained space with limited communication,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 1000–1011, Mar. 2019. doi: 10.1109/TCYB.2018.2794139
    [11]
    Y. Z. Hua, X. W. Dong, Q. D. Li, and Z. Ren, “Distributed time-varying formation robust tracking for general linear multi-agent systems with parameter uncertainties and external disturbances,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1959–1969, Aug. 2017. doi: 10.1109/TCYB.2017.2701889
    [12]
    C. H. Yan, W. Zhang, H. S. Su, and X. H. Li, “Adaptive bipartite time-varying output formation control for multi-agent systems on signed directed graphs, ” IEEE Trans. Cybern., DOI: 10.1109/TCYB.2021.3054648, 2021.
    [13]
    X. W. Dong, Y. Zhou, Z. Ren, and Y. S. Zhong, “Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying,” IEEE Trans. Industr. Electron., vol. 64, no. 6, pp. 5014–5024, Jun. 2017. doi: 10.1109/TIE.2016.2593656
    [14]
    Y. Z. Hua, X. W. Dong, G. Q. Hu, Q. D. Li, and Z. Ren, “Distributed time-varying output formation tracking for heterogeneous linear multi-agent systems with a nonautonomous leader of unknown input,” IEEE Trans. Automat. Contr., vol. 64, no. 10, pp. 4292–4299, Oct. 2019. doi: 10.1109/TAC.2019.2893978
    [15]
    X. W. Dong and G. Q. Hu, “Time-varying formation tracking for linear multiagent systems with multiple leaders,” IEEE Trans. Automat. Contr., vol. 62, no. 7, pp. 3658–3664, Jul. 2017. doi: 10.1109/TAC.2017.2673411
    [16]
    S. Zuo, Y. D. Song, F. L. Lewis, and A. Davoudi, “Time-varying output formation containment of general linear homogeneous and heterogeneous multi-agent systems,” IEEE Trans. Control Netw. Syst., vol. 6, no. 2, pp. 537–548, Jun. 2019. doi: 10.1109/TCNS.2018.2847039
    [17]
    J. Y. Hu, Bhowmick, and A. Lanzon, “Distributed adaptive time-varying group formation tracking for multi-agent systems with multiple leaders on directed graphs,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp. 140–150, Mar. 2020. doi: 10.1109/TCNS.2019.2913619
    [18]
    Y. L. Cai, H. G. Zhang, Y. C. Wang, Z. Y. Gao, and Q. He, “Adaptive bipartite fixed-time time-varying output formation-containment tracking of heterogeneous linear multi-agent systems, ” IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2021.3059763, 2021.
    [19]
    J. L. Yu, X. W. Dong, Q. D. Li, J. H. Lü, and Z. Ren, “Fully adaptive practical time-varying output formation tracking for high-order nonlinear stochastic multiagent system with multiple leaders,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 2265–2277, Apr. 2021. doi: 10.1109/TCYB.2019.2956316
    [20]
    H. G. Zhang, Z. Y. Gao, Y. C. Wang, and Y. L. Cai, “Leader-following exponential consensus of fractional-order descriptor multi-agent systems with distributed event-triggered strategy, ” IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2021.3082549, 2021.
    [21]
    W. F. Hu, C. H. Yang, T. W. Huang, and W. H. Gui, “A distributed dynamic event-triggered control approach to consensus of linear multi-agent systems with directed networks,” IEEE Trans. Cybern., vol. 50, no. 2, pp. 869–874, Feb. 2020. doi: 10.1109/TCYB.2018.2868778
    [22]
    W. L. He, B. Xu, Q.-L. Han, and F. Qian, “Adaptive consensus control of linear multi-agent systems with dynamic event-triggered strategies,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 2996–3008, Jul. 2020. doi: 10.1109/TCYB.2019.2920093
    [23]
    A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control using dynamic event-triggering mechanism for multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sept. 2020.
    [24]
    R. Wang, Q. Y. Sun, J. Han, J. G. Zhou, W. Hu, H. G. Zhang, and P. Wang, “Energy-management strategy of battery energy storage systems in DC microgrids: A distributed dynamic event-triggered $ \substack {H_{\infty}} $ consensus control, ” IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2021.3129184, 2021.
    [25]
    P. A. Ioannou and J. Sun, Robust Adaptive Control. New York, USA: Courier Corporation, 2012.
    [26]
    J. Zhang, H. G. Zhang, K. Zhang, and Y. L. Cai, “Observer-based output feedback event-triggered adaptive control for linear multi-agent systems under switching topologies, ” IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2021.3084317, 2021.
    [27]
    B. Cheng and Z. K. Li, “Fully distributed event-triggered protocols for linear multi-agent networks,” IEEE Trans. Automat. Contr., vol. 64, no. 4, pp. 1655–1662, Apr. 2019. doi: 10.1109/TAC.2018.2857723
    [28]
    W. Li, H. Zhang, Y. Cai, and Y. Wang, “Fully distributed formation control of general linear multi-agent systems using a novel mixed self- and event-triggered strategy,” IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2021.3129469, 2021.
    [29]
    X. W. Li, Y. Tang, and H. R. Karimi, “Consensus of multi-agent systems via fully distributed event-triggered control,” Automatica, vol. 116, p. 108898, Jun. 2020.
    [30]
    J. Zhang, H. G. Zhang, Y. L. Liang, and W. Z. Song, “Adaptive bipartite output tracking consensus in switching networks of heterogeneous linear multi-agent systems based on edge events,” IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2021.3089596, 2021.
    [31]
    B. Cheng and Z. K. Li, “Coordinated tracking control with asynchronous edge-based event-triggered communications,” IEEE Trans. Automat. Contr., vol. 64, no. 10, pp. 4321–4328, Oct. 2019. doi: 10.1109/TAC.2019.2895927
    [32]
    H. G. Zhang, J. Zhang, Y. L. Cai, S. X. Sun, and J. Y. Sun, “Leader-following consensus for a class of nonlinear multi-agent systems under event-triggered and edge-event triggered mechanisms,” IEEE Trans. Cybern., DOI: 10.1109/TCYB.2020.3035907, 2020.
    [33]
    Y. Y. Qian, L. Liu, and G. Feng, “Distributed dynamic event-triggered control for cooperative output regulation of linear multiagent systems,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3023–3032, Jul. 2020. doi: 10.1109/TCYB.2019.2905931
    [34]
    W. Y. Xu, D. W. C. Ho, and W. L. He, “Dynamic adaptive event-triggered scheme for general linear multi-agent systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1789–1794, Jan. 2020. doi: 10.1016/j.ifacol.2020.12.2329
    [35]
    G. H. Wen, X. H. Yu, W. W. Yu, and J. H. Lu, “Coordination and control of complex network systems with switching topologies: A survey,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 10, pp. 6342–6357, Oct. 2021. doi: 10.1109/TSMC.2019.2961753
    [36]
    Y. L. Cai, H. G. Zhang, W. H. Li, Y. F. Mu, and Q. He, “Distributed bipartite adaptive event-triggered fault-tolerant consensus tracking for linear multi-agent systems under actuator faults, ” IEEE Trans. Cybern., DOI: 10.1109/TCYB.2021.3069955, 2021.
    [37]
    G. H. Wen and W. X. Zheng, “On constructing multiple Lyapunov functions for tracking control of multiple agents with switching topologies,” IEEE Trans. Automat. Contr., vol. 64, no. 9, pp. 3796–3803, Sep. 2019. doi: 10.1109/TAC.2018.2885079
    [38]
    H. G. Zhang, Y. L. Cai, Y. C. Wang, and H. G. Su, “Adaptive bipartite event-triggered output consensus of heterogeneous linear multi-agent systems under fixed and switching topologies,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4816–4830, Nov. 2020. doi: 10.1109/TNNLS.2019.2958107
    [39]
    Z. K. Li, W. Ren, X. D. Liu, and L. H. Xie, “Distributed consensus of linear multi-agent systems with adaptive dynamic protocols,” Automatica, vol. 49, no. 7, pp. 1986–1995, Jul. 2013. doi: 10.1016/j.automatica.2013.03.015
    [40]
    B. D. Ning, Q.-L. Han, and Z. Y. Zuo, “Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach,” Automatica, vol. 105, pp. 406–414, Jul. 2019.
  • JAS-2021-1017-supp.pdf
    simulation_program.rar

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1134) PDF downloads(181) Cited by()

    Highlights

    • This paper addresses the bipartite time-varying output formation tracking problem for heterogeneous MASs with multiple leaders and switching communication networks via a novel reduced-dimensional observer-based fully distributed asynchronous dynamic edge-event-triggered output feedback control protocol
    • The proposed control protocol reduces the dimension of information to be transmitted between neighboring agents
    • The control protocol can guarantee a larger inter-event time interval and reduce more communication frequency
    • A reduced-dimensional observer is designed. In contrast to the full-dimensional observer, the design cost of observer is greatly reduced
    • This paper considers the case that the switching communication networks may be disconnected. Theoretical analysis gives the admissible switching frequency and switching width under the proposed control protocol. Compared with related works, the admissible switching frequency and switching width are larger

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return