IEEE/CAA Journal of Automatica Sinica
Citation: | Kun Zhu, Chengpu Yu, and Yiming Wan, "Recursive Least Squares Identification With Variable-Direction Forgetting via Oblique Projection Decomposition," IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 547-555, Mar. 2022. doi: 10.1109/JAS.2021.1004362 |
[1] |
L. Ljung, “Perspectives on system identification,” Annual Reviews in Control, vol. 34, no. 1, pp. 1–12, 2010. doi: 10.1016/j.arcontrol.2009.12.001
|
[2] |
M. S. Mahmoud and M. O. Oyedeji, “Adaptive and predictive control strategies for wind turbine systems: A survey,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 364–378, 2019. doi: 10.1109/JAS.2019.1911375
|
[3] |
T. Soderstrom and L. Ljung, Theory and Practice of Recursive Identification. Cambridge, USA: The MIT Press, 1987.
|
[4] |
B. Q. Mu and H. F. Chen, “Recursive identification of multi-input multioutput errors-in-variables Hammerstein systems,” IEEE Trans. Automatic Control, vol. 60, no. 3, pp. 843–849, 2014.
|
[5] |
P. Zhou, P. Dai, H. Song, and T. Chai, “Data-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmaking,” IET Control Theory and Applications, vol. 11, no. 4, pp. 2343–2351, 2017.
|
[6] |
X. Wang and F. Ding, “Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems,” Int. Journal of Adaptive Control and Signal Processing, vol. 30, no. 6, pp. 824–842, 2015.
|
[7] |
Y. Wang, F. Ding, and M. Wu, “Recursive parameter estimation algorithm for multivariate output-error systems,” Journal of the Franklin Institute, vol. 355, no. 12, pp. 5163–5181, 2018. doi: 10.1016/j.jfranklin.2018.04.013
|
[8] |
K. Bekiroglu, S. Srinivasan, E. Png, R. Su, and C. Lagoa, “Recursive approximation of complex behaviours with IoT-data imperfections,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp. 656–667, 2020. doi: 10.1109/JAS.2020.1003126
|
[9] |
J. Lou, L. Jia, R. Tao, and Y. Wang, “Distributed incremental biascompensated RLS estimation over multi-agent networks,” Science China Information Sciences, vol. 60, no. 3, Article No. 032204, 2017. doi: 10.1007/s11432-016-0284-2
|
[10] |
C. Yu, J. Chen, S. Li, and M. Verhaegen, “Identification of affinely parameterized state–space models with unknown inputs,” Automatica, vol. 122, Article No. 109271, 2020. doi: 10.1016/j.automatica.2020.109271
|
[11] |
M. Dai, Y. He, and X. Yang, “Continuous-time system identification with nuclear norm minimization and GPMF-based subspace method,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 2, pp. 184–191, 2016. doi: 10.1109/JAS.2016.7451106
|
[12] |
R. M. Johnstone, C. R. Johnson, R. R. Bitmead, and B. D. O. Anderson, “Exponential convergence of recursive least squares with exponential forgetting factor,” Systems and Control Letters, vol. 2, no. 2, pp. 77–82, 1982. doi: 10.1016/S0167-6911(82)80014-5
|
[13] |
S. Bruggemann and R. R. Bitmead, “Exponential convergence of recursive least squares with forgetting factor for multiple-output systems,” Automatica, vol. 124, Article No. 109389, 2021. doi: 10.1016/j.automatica.2020.109389
|
[14] |
D. Bertin, S. Bittanti, and P. Bolzern, “Tracking of nonstationary systems by means of different prediction error direction forgetting techniques,” in Proc. IFAC Workshop on Adaptive Systems in Control and Signal Processing, Pergamon, Turkey, 1987, pp. 185–190.
|
[15] |
C. Paleologu, J. Benesty, and S. Ciochina, “A robust variable forgetting factor recursive least-squares algorithm for system identification,” IEEE Signal Processing Letters, vol. 15, pp. 597–600, 2008. doi: 10.1109/LSP.2008.2001559
|
[16] |
S. Leung and C. F. So, “Gradient-based variable forgetting factor RLS algorithm in time-varying environments,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 3141–3150, 2005. doi: 10.1109/TSP.2005.851110
|
[17] |
J. Dokoupil, A. Voda, and P. Vaclavek, “Regularized extended estimation with stabilized exponential forgetting,” IEEE Trans. Automatic Control, vol. 62, no. 12, pp. 6513–6520, 2017. doi: 10.1109/TAC.2017.2656379
|
[18] |
A. L. Bruce, A. Goel, and D. S. Bernstein, “Convergence and consistency of recursive least squares with variable-rate forgetting,” Automatica, vol. 119, Article No. 109052, 2020. doi: 10.1016/j.automatica.2020.109052
|
[19] |
J. E. Parkum, N. Poulsen, and J. Holst, “Recursive forgetting algorithms,” Int. Journal of Control, vol. 55, no. 1, pp. 109–128, 1992. doi: 10.1080/00207179208934228
|
[20] |
S. Bittanti, P. Bolzern, and M. Campi, “Convergence and exponential convergence of identification algorithms with directional forgetting factor,” Automatica, vol. 26, no. 5, pp. 929–932, 1990. doi: 10.1016/0005-1098(90)90012-7
|
[21] |
L. Cao and H. Schwartz, “A directional forgetting algorithm based on the decomposition of the information matrix,” Automatica, vol. 36, no. 11, pp. 1725–1731, 2000. doi: 10.1016/S0005-1098(00)00093-5
|
[22] |
S. A. U. Islam and D. S. Bernstein, “Recursive least squares for realtime implementation [Lecture Notes],” IEEE Control Systems, vol. 39, no. 3, pp. 82–85, 2019. doi: 10.1109/MCS.2019.2900788
|
[23] |
A. Goel, A. L. Bruce, and D. S. Bernstein, “Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency [Lecture Notes],” IEEE Control Systems, vol. 40, no. 4, pp. 80–102, 2020.
|
[24] |
A. L. Bruce, A. Goel, and D. S. Bernstein, “Recursive least squares with matrix forgetting,” in Proc. American Control Conf., Denver, CO, USA, 2020, pp. 1406–1410.
|
[25] |
F. Ding, P. X. Liu, and G. Liu, “Multiinnovation least-squares identification for system modeling,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics)
|
[26] |
H. V. Henderson and S. R. Searle, “The vec-permutation matrix, the vec operator and kronecker products: A review,” Linear and Multilinear Algebra, vol. 9, no. 4, pp. 271–288, 1981. doi: 10.1080/03081088108817379
|
[27] |
P. C. Hansen, “Oblique projections and standard-form transformations for discrete inverse problems,” Numerical Linear Algebra with Applications, vol. 20, no. 2, pp. 250–258, 2013. doi: 10.1002/nla.802
|
[28] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, USA: SIAM, 2000.
|