IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Yu, Z. Y. Lei, Y. R. Wang, T. F. Zhang, C. Peng, and S. C. Gao, “Improving dendritic neuron model with dynamic scale-free network-based differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 99–110, Jan. 2022. doi: 10.1109/JAS.2021.1004284 |
[1] |
S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, “Deep learning and time series-to-image encoding for financial forecasting,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp. 683–692, 2020. doi: 10.1109/JAS.2020.1003132
|
[2] |
A. Chaudhuri, K. Mandaviya, P. Badelia, and S. K. Ghosh, “Optical character recognition systems,” in Optical Character Recognition Systems for Different Languages with Soft Computing. Cham, Switzerland: Springer, 2017, pp. 9–41.
|
[3] |
P. Roy, G. S. Mahapatra, and K. N. Dey, “Forecasting of software reliability using neighborhood fuzzy particle swarm optimization based novel neural network,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, pp. 1365–1383, 2019. doi: 10.1109/JAS.2019.1911753
|
[4] |
W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943. doi: 10.1007/BF02478259
|
[5] |
V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proc. 27th Int. Conf. Int. Conf. Machine Learning, Omnipress, USA, 2010, pp. 807–814.
|
[6] |
Q. Liu and J. Wang, “A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming,” IEEE Trans. Neural Networks, vol. 19, no. 4, pp. 558–570, 2008. doi: 10.1109/TNN.2007.910736
|
[7] |
A. Wuraola and N. Patel, “SQNL: A new computationally efficient activation function,” in Proc. Int. Joint Conf. Neural Networks (IJCNN), IEEE, 2018, pp. 1–7.
|
[8] |
W. Zhang, J. Wang, and F. Lan, “Dynamic hand gesture recognition based on short-term sampling neural networks,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 110–120, 2020.
|
[9] |
M. Valueva, N. Nagornov, P. Lyakhov, G. Valuev, and N. Chervyakov, “Application of the residue number system to reduce hardware costs of the convolutional neural network implementation,” Mathematics and Computers in Simulation, vol. 177, pp. 232–243, 2020. doi: 10.1016/j.matcom.2020.04.031
|
[10] |
A. Fernandez, R. B. H. Bunke, and J. Schmiduber, “A novel connectionist system for improved unconstrained handwriting recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.
|
[11] |
T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, “Financial time series prediction using a dendritic neuron model,” Knowledge-Based Systems, vol. 105, no. 1, pp. 214–224, 2016. doi: 10.1016/j.knosys.2016.05.031
|
[12] |
A. Gidon, T. A. Zolnik, P. Fidzinski, F. Bolduan, A. Papoutsi, P. Poirazi, M. Holtkamp, I. Vida, and M. E. Larkum, “Dendritic action potentials and computation in human layer 2/3 cortical neurons,” Science, vol. 367, no. 6473, pp. 83–87, 2020. doi: 10.1126/science.aax6239
|
[13] |
X. Li, J. Tang, Q. Zhang, B. Gao, J. J. Yang, S. Song, W. Wu, W. Zhang, P. Yao, N. Deng, and L. Deng, “Power-efficient neural network with artificial dendrites,” Nature Nanotechnology, vol. 15, no. 9, pp. 776–782, 2020.
|
[14] |
F. Han, M. Wiercigroch, J.-A. Fang, and Z. Wang, “Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity,” Int. J. Neural Systems, vol. 21, no. 05, pp. 415–425, 2011. doi: 10.1142/S0129065711002924
|
[15] |
S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–614, 2019. doi: 10.1109/TNNLS.2018.2846646
|
[16] |
F. Gabbiani, H. G. Krapp, C. Koch, and G. Laurent, “Multiplicative computation in a visual neuron sensitive to looming,” Nature, vol. 420, no. 6913, pp. 320–324, 2002. doi: 10.1038/nature01190
|
[17] |
Y. Wang, S. Gao, Y. Yu, Z. Cai, and Z. Wang, “A gravitational search algorithm with hierarchy and distributed framework,” Knowledge-Based Systems, vol. 218, no. 22, Article No. 106877, 2021. doi: 10.1016/j.knosys.2021.106877
|
[18] |
T. Zhang, C. Lv, F. Ma, K. Zhao, H. Wang, and G. M. O’Hare, “A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform,” Neurocomputing, vol. 397, no. 15, pp. 438–446, 2020. doi: 10.1016/j.neucom.2019.08.105
|
[19] |
S. Liu, Y. Xia, Z. Shi, H. Yu, Z. Li, and J. Lin, “Deep learning in sheet metal bending with a novel theory-guided deep neural network,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 3, pp. 565–581, 2021. doi: 10.1109/JAS.2021.1003871
|
[20] |
S. C. Tan, J. Watada, Z. Ibrahim, and M. Khalid, “Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects,” IEEE Trans. Neural Networks and Learning Systems, vol. 26, no. 5, pp. 933–950, 2014.
|
[21] |
L. Zhang and P. N. Suganthan, “A survey of randomized algorithms for training neural networks,” Information Sciences, vol. 364, no. 10, pp. 146–155, 2016.
|
[22] |
F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, and O. Castillo, “Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO,” Applied Soft Computing, vol. 38, pp. 860–871, 2016. doi: 10.1016/j.asoc.2015.10.027
|
[23] |
Y. Cao and J. Huang, “Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1478–1488, 2020. doi: 10.1109/JAS.2020.1003351
|
[24] |
Y. Wang, S. Gao, M. Zhou, and Y. Yu, “A multi-layered gravitational search algorithm for function optimization and real-world problems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 94–109, 2020.
|
[25] |
L. Hu, S. Yang, X. Luo, and M. Zhou, “An algorithm of inductively identifying clusters from attributed graphs,” IEEE Trans. Big Data, to be published, 2020,
|
[26] |
L. Hu, K. C. Chan, X. Yuan, and S. Xiong, “A variational bayesian framework for cluster analysis in a complex network,” IEEE Trans. Knowledge and Data Engineering, vol. 32, no. 11, pp. 2115–2128, 2115.
|
[27] |
S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Let a biogeography-based optimizer train your multi-layer perceptron,” Information Sciences, vol. 269, pp. 188–209, 2014. doi: 10.1016/j.ins.2014.01.038
|
[28] |
R. Storn and K. Price, “Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. doi: 10.1023/A:1008202821328
|
[29] |
S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-art,” IEEE Trans. Evolutionary Computation, vol. 15, no. 1, pp. 4–31, 2011. doi: 10.1109/TEVC.2010.2059031
|
[30] |
A. Kumar, R. K. Misra, and D. Singh, “Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase,” in Proc. IEEE Congress Evolutionary Computation (CEC), 2017, pp. 1835–1842.
|
[31] |
Y. Tang, J. Ji, S. Gao, H. Dai, Y. Yu, and Y. Todo, “A pruning neural network model in credit classification analysis,” Computational Intelligence and Neuroscience, vol. 2018, pp. 1–22, 2018.
|
[32] |
Y. Ito, “Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory,” Neural Networks, vol. 4, no. 3, pp. 385–394, 1991. doi: 10.1016/0893-6080(91)90075-G
|
[33] |
Y. Yi, Z. Zhang, and S. Patterson, “Scale-free loopy structure is resistant to noise in consensus dynamics in complex networks,” IEEE Trans. Cybernetics, vol. 50, no. 1, pp. 190–200, 2018.
|
[34] |
D. Wu, N. Jiang, W. Du, K. Tang, and X. Cao, “Particle swarm optimization with moving particles on scale-free networks,” IEEE Trans. Network Science and Engineering, vol. 7, no. 1, pp. 497–506, 2018.
|
[35] |
J. L. Payne and M. J. Eppstein, “Evolutionary dynamics on scale-free interaction networks,” IEEE Trans. Evolutionary Computation, vol. 13, no. 4, pp. 895–912, 2009. doi: 10.1109/TEVC.2009.2019825
|
[36] |
A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999. doi: 10.1126/science.286.5439.509
|
[37] |
M. E. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003. doi: 10.1137/S003614450342480
|
[38] |
D. Wu, X. Luo, G. Wang, M. Shang, Y. Yuan, and H. Yan, “A highly accurate framework for self-labeled semisupervised classification in industrial applications,” IEEE Trans. Industrial Informatics, vol. 14, no. 3, pp. 909–920, 2018. doi: 10.1109/TII.2017.2737827
|
[39] |
D. Simon, “Biogeography-based optimization,” IEEE Trans. Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008. doi: 10.1109/TEVC.2008.919004
|
[40] |
Y. Yu, S. Gao, Y. Wang, and Y. Todo, “Global optimum-based search differential evolution,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 379–394, 2019. doi: 10.1109/JAS.2019.1911378
|
[41] |
J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Trans. Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009. doi: 10.1109/TEVC.2009.2014613
|
[42] |
R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in Proc. Evolutionary Computation (CEC), IEEE, 2013, pp. 71–78.
|
[43] |
S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, and M. Zhou, “Chaotic local search-based differential evolution algorithms for optimization,” IEEE Trans. Systems,Man and Cybernetics:Systems, vol. 51, no. 6, pp. 3954–3967, 2021. doi: 10.1109/TSMC.2019.2956121
|
[44] |
Y. Cai and J. Wang, “Differential evolution with neighborhood and direction information for numerical optimization,” IEEE Trans. Cybernetics, vol. 43, no. 6, pp. 2202–2215, 2013. doi: 10.1109/TCYB.2013.2245501
|
[45] |
A. W. Mohamed, A. A. Hadi, and K. M. Jambi, “Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization,” Swarm and Evolutionary Computation, vol. 50, Article No. 100455, 2019. doi: 10.1016/j.swevo.2018.10.006
|
[46] |
D. Dua and C. Graff, “UCI Machine Learning Repository,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml, Accessed on: May 10, 2021.
|
[47] |
G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. John Wiley & Sons, 2015.
|
[48] |
Keirn and Aunon, “Brain-Computer Interfaces Laboratory,” 1989. [Online]. Available: https://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon, Accessed on: May 10, 2021.
|
[49] |
S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power,” Information Sciences, vol. 180, no. 10, pp. 2044–2064, 2010. doi: 10.1016/j.ins.2009.12.010
|
[50] |
J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011. doi: 10.1016/j.swevo.2011.02.002
|
[51] |
D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. doi: 10.1109/4235.585893
|
[52] |
J. N. Mandrekar, “Receiver operating characteristic curve in diagnostic test assessment,” J. Thoracic Oncology, vol. 5, no. 9, pp. 1315–1316, 2010. doi: 10.1097/JTO.0b013e3181ec173d
|
[53] |
V. Cerqueira, L. Torgo, and I. Mozetič, “Evaluating time series forecasting models: An empirical study on performance estimation methods,” Machine Learning, vol. 109, no. 11, pp. 1997–2028, 2020. doi: 10.1007/s10994-020-05910-7
|