IEEE/CAA Journal of Automatica Sinica
Citation: | A. J. Song, G. H. Wu, W. Pedrycz, and L. Wang, “Integrating variable reduction strategy with evolutionary algorithms for solving nonlinear equations systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 75–89, Jan. 2022. doi: 10.1109/JAS.2021.1004278 |
[1] |
D. Mehta and C. Grosan, “A collection of challenging optimization problems in science, engineering and economics,” in Proc. IEEE Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 2697–2704.
|
[2] |
A. Holstad, “Numerical solution of nonlinear equations in chemical speciation calculations,” Computational geosciences, vol. 3, no. 3–4, pp. 229–257, 1999.
|
[3] |
C. L. Collins, “Forward kinematics of planar parallel manipulators in the Clifford algebra of p2,” Mechanism and Machine Theory, vol. 37, no. 8, pp. 799–813, 2002. doi: 10.1016/S0094-114X(02)00023-X
|
[4] |
F. Facchinei and C. Kanzow, “Generalized nash equilibrium problems,” 4or, vol. 5, no. 3, pp. 173–210, 2007. doi: 10.1007/s10288-007-0054-4
|
[5] |
N. I. Chaudhary, M. S. Aslam, and M. A. Z. Raja, “Modified volterra lms algorithm to fractional order for identification of hammerstein non-linear system,” IET Signal Processing, vol. 11, no. 8, pp. 975–985, 2017. doi: 10.1049/iet-spr.2016.0578
|
[6] |
G. Yuan and X. Lu, “A new backtracking inexact bfgs method for symmetric nonlinear equations,” Computers &Mathematics with Applications, vol. 55, no. 1, pp. 116–129, 2008.
|
[7] |
C. L. Karr, B. Weck, and L. M. Freeman, “Solutions to systems of nonlinear equations via a genetic algorithm,” Engineering Applications of Artificial Intelligence, vol. 11, no. 3, pp. 369–375, 1998. doi: 10.1016/S0952-1976(97)00067-5
|
[8] |
C. Grosan and A. Abraham, “A new approach for solving nonlinear equations systems,” IEEE Trans. Systems,Man,and Cybernetics-Part A:Systems and Humans, vol. 38, no. 3, pp. 698–714, 2008. doi: 10.1109/TSMCA.2008.918599
|
[9] |
D. J. Bates, A. J. Sommese, J. D. Hauenstein, and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini. Philadelphia, USA: SIAM, 2013.
|
[10] |
J. Denis and H. Wolkowicz, “Least change secant methods, sizing, and shifting,” SIAM Journal of Numerical Analisys, vol. 30, pp. 1291–1314, 1993. doi: 10.1137/0730067
|
[11] |
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Philadelphia, USA: SIAM, 2000.
|
[12] |
L. Wang, Intelligent Optimization Algorithms with Applications. Beijing, China: Tsinghua University & Springer Press, 2001.
|
[13] |
H.-T. Geng, Y.-J. Sun, Q.-X. Song, and T.-T. Wu, “Research of ranking method in evolution strategy for solving nonlinear system of equations,” in Proc. First Int. Conf. Information Science and Engineering, IEEE, 2009, pp. 348–351.
|
[14] |
A. Ouyang, Y. Zhou, and Q. Luo, “Hybrid particle swarm optimization algorithm for solving systems of nonlinear equations,” in Proc. IEEE Int. Conf. Granular Computing, 2009, pp. 460–465.
|
[15] |
O. E. Turgut, M. S. Turgut, and M. T. Coban, “Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations,” Computers &Mathematics with Applications, vol. 68, no. 4, pp. 508–530, 2014.
|
[16] |
W. Gong, Y. Wang, Z. Cai, and L. Wang, “Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 50, no. 4, pp. 1499–1513, 2020. doi: 10.1109/TSMC.2018.2828018
|
[17] |
H. Ren, L. Wu, W. Bi, and I. K. Argyros, “Solving nonlinear equations system via an efficient genetic algorithm with symmetric and harmonious individuals,” Applied Mathematics and Computation, vol. 219, no. 23, pp. 10967–10973, 2013. doi: 10.1016/j.amc.2013.04.041
|
[18] |
G. Joshi and M. B. Krishna, “Solving system of non-linear equations using genetic algorithm,” in Proc. Int. Conf. Advances in Computing, Communications and Informatics (ICACCI), IEEE, 2014, pp. 1302–1308.
|
[19] |
H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – A comprehensive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002. doi: 10.1023/A:1015059928466
|
[20] |
Z. Liao, W. Gong, X. Yan, L. Wang, and C. Hu, “Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 50, no. 4, pp. 1590–1601, 2020. doi: 10.1109/TSMC.2018.2852798
|
[21] |
G. Wu, W. Pedrycz, P. N. Suganthan, and R. Mallipeddi, “A variable reduction strategy for evolutionary algorithms handling equality constraints,” Applied Soft Computing, vol. 37, pp. 774–786, 2015. doi: 10.1016/j.asoc.2015.09.007
|
[22] |
G. Wu, W. Pedrycz, P. N. Suganthan, and H. Li, “Using variable reduction strategy to accelerate evolutionary optimization,” Applied Soft Computing, vol. 61, pp. 283–293, 2017. doi: 10.1016/j.asoc.2017.08.012
|
[23] |
W. Song, Y. Wang, H.-X. Li, and Z. Cai, “Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 19, no. 3, pp. 414–431, 2014.
|
[24] |
S. Qin, S. Zeng, W. Dong, and X. Li, “Nonlinear equation systems solved by many-objective hype,” in Proc. IEEE Congress Evolutionary Computation (CEC), 2015, pp. 2691–2696.
|
[25] |
M. J. Hirsch, P. M. Pardalos, and M. G. Resende, “Solving systems of nonlinear equations with continuous grasp,” Nonlinear Analysis:Real World Applications, vol. 10, no. 4, pp. 2000–2006, 2009. doi: 10.1016/j.nonrwa.2008.03.006
|
[26] |
Y. Wang, H.-X. Li, G. G. Yen, and W. Song, “Mommop: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems,” IEEE Trans. Cybernetics, vol. 45, no. 4, pp. 830–843, 2014.
|
[27] |
A. Mousa and I. El-Desoky, “GENLS: Co-evolutionary algorithm for nonlinear system of equations,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 633–642, 2008. doi: 10.1016/j.amc.2007.08.088
|
[28] |
A. F. Kuri-Morales, R. H. No, and D. México, “Solution of simultaneous non-linear equations using genetic algorithms,” WSEAS Trans. Systems, vol. 2, no. 1, pp. 44–51, 2003.
|
[29] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. doi: 10.1109/4235.996017
|
[30] |
J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Trans. Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009. doi: 10.1109/TEVC.2009.2014613
|
[31] |
Y. Wang, J. Xiang, and Z. Cai, “A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator,” Applied Soft Computing, vol. 12, no. 11, pp. 3526–3538, 2012. doi: 10.1016/j.asoc.2012.06.008
|
[32] |
I. Triguero, S. González, J. M. Moyano, S. García, J. Alcala-Fdez, J. Luengo, A. Fernández, M. J. Del Jesus, L. Sanchez, and F. Herrera, “Keel 3.0: An open source software for multi-stage analysis in data mining,” Int. Journal of Computational Intelligence Systems, vol. 10, no. 1, pp. 1238–1249, 2017. doi: 10.2991/ijcis.10.1.82
|
[33] |
R. Thomsen, “Multimodal optimization using crowding-based differential evolution,” in Proc. Congress Evolutionary Computation (IEEE Cat. No. 04TH8753), IEEE, 2004, vol. 2, pp. 1382–1389.
|
[34] |
X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions for cec2013 special session and competition on niching methods for multimodal function optimization,” Tech. Rep., Royal Melbourne Institute of Technology University, Evolutionary Computation and Machine Learning Group, Australia, 2013.
|
[35] |
W. Gong, Y. Wang, Z. Cai, and S. Yang, “A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems,” IEEE Trans. Evolutionary Computation, vol. 21, no. 5, pp. 697–713, 2017. doi: 10.1109/TEVC.2017.2670779
|
[36] |
G. C. Ramadas, E. M. Fernandes, and A. M. A. Rocha, “Multiple roots of systems of equations by repulsion merit functions,” in Proc. Int. Conf. Computational Science and Its Applications, Springer, 2014, pp. 126–139.
|
[37] |
B.-Y. Qu, P. N. Suganthan, and J.-J. Liang, “Differential evolution with neighborhood mutation for multimodal optimization,” IEEE Trans. Evolutionary Computation, vol. 16, no. 5, pp. 601–614, 2012. doi: 10.1109/TEVC.2011.2161873
|
[38] |
M. A. Z. Raja, A. K. Kiani, A. Shehzad, and A. Zameer, “Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models,” SpringerPlus, vol. 5, no. 1, Article No. 2063, 2016. doi: 10.1186/s40064-016-3750-8
|
[39] |
M. A. Z. Raja, A. Zameer, A. K. Kiani, A. Shehzad, and M. A. R. Khan, “Nature-inspired computational intelligence integration with nelder– mead method to solve nonlinear benchmark models,” Neural Computing and Applications, vol. 29, no. 4, pp. 1169–1193, 2018. doi: 10.1007/s00521-016-2523-1
|
[40] |
X. Zhang, Q. Wan, and Y. Fan, “Applying modified cuckoo search algorithm for solving systems of nonlinear equations,” Neural Computing and Applications, vol. 31, no. 2, pp. 553–576, 2019. doi: 10.1007/s00521-017-3088-3
|
[41] |
J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006. doi: 10.1109/TEVC.2005.857610
|
[42] |
G. Wu, R. Mallipeddi, and P. N. Suganthan, “Ensemble strategies for population-based optimization algorithms – A survey,” Swarm and Evolutionary Computation, vol. 44, pp. 695–711, 2019. doi: 10.1016/j.swevo.2018.08.015
|
[43] |
H. Chen, G. Wu, W. Pedrycz, P. N. Suganthan, L. Xing, and X. Zhu, “An adaptive resource allocation strategy for objective space partition-based multiobjective optimization,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 51, no. 3, pp. 1507–1522, 2021.
|