A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 1
Jan.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. Y. Zhou, J. C. Liu, and J. Z. Yu, “A survey of underwater multi-robot systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 1–18, Jan. 2022. doi: 10.1109/JAS.2021.1004269
Citation: Z. Y. Zhou, J. C. Liu, and J. Z. Yu, “A survey of underwater multi-robot systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 1–18, Jan. 2022. doi: 10.1109/JAS.2021.1004269

A Survey of Underwater Multi-Robot Systems

doi: 10.1109/JAS.2021.1004269
Funds:  This work was supported in part by the National Natural Science Foundation of China (U1909206, 61725305, 61903007, 62073196), and in part by the S&T Program of Hebei (F2020203037)
More Information
  • As a cross-cutting field between ocean development and multi-robot system (MRS), the underwater multi-robot system (UMRS) has gained increasing attention from researchers and engineers in recent decades. In this paper, we present a comprehensive survey of cooperation issues, one of the key components of UMRS, from the perspective of the emergence of new functions. More specifically, we categorize the cooperation in terms of task-space, motion-space, measurement-space, as well as their combination. Further, we analyze the architecture of UMRS from three aspects, i.e., the performance of the individual underwater robot, the new functions of underwater robots, and the technical approaches of MRS. To conclude, we have discussed related promising directions for future research. This survey provides valuable insight into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios.

     

  • loading
  • [1]
    E. Freund, “On the design of multi-robot systems,” in Proc. IEEE Int. Conf. Robot. Autom., Atlanta, GA, USA, Mar. 1984, pp. 477–490.
    [2]
    Kang Shin and M. Epstein, “Communication primitives for a distributed multi-robot system,” in Proc. IEEE Int. Conf. Robot. Autom., St. Louis, MO, USA, Mar. 1985, pp. 910–917.
    [3]
    C. Le Pape, “A combination of centralized and distributed methods for multi-agent planning and scheduling,” in Proc. IEEE Int. Conf. Robot. Autom., Cincinnati, OH, USA, May 1990, pp. 488–493.
    [4]
    H. Singh, J. Catipovic, R. Eastwood, L. Freitag, H. Henriksen, F. Hover, D. Yoerger, J. G. Bellingham, and B. A. Moran, “Integrated approach to multiple AUV communications, navigation and docking,” in Proc. Oceans Conf. Rec. (IEEE), Fort Lauderdale, FL, USA, Sep. 1996, pp. 59–64.
    [5]
    J. B. Sousa, F. L. Pereira, and E. P. da Silva, “A general control architecture for multiple AUVs,” in Proc. IEEE Symp. Auton. Underwater Vehicle Technol., Monterey, CA, USA, Jun. 1996, pp. 223–230.
    [6]
    D. Davis, “Data compression and sampling methodology for ocean observing systems,” in Proc. Oceans Conf. Rec. (IEEE), Providence, RI, USA, Sep. 2000, pp. 1219–1225.
    [7]
    Y. Lin, H. Kastein, T. Peterson, C. White, C. G. Lowe, and C. M. Clark, “A multi-AUV state estimator for determining the 3D position of tagged fish,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Chicago, IL, USA, Sep. 2014, pp. 3469–3475.
    [8]
    D. Shinzaki, C. Gage, S. Tang, M. Moline, B. Wolfe, C. G. Lowe, and C. Clark, “A multi-AUV system for cooperative tracking and following of leopard sharks,” in Proc. IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, May 2013, pp. 4153–4158.
    [9]
    R. Thenius, D. Moser, J. C. Varughese, S. Kernbach, I. Kuksin, O. Kernbach, E. Kuksina, N. Mišković, S. Bogdan, T. Petrović, A. Babić, F. Boyer, V. Lebastard, S. Bazeille, G. W. Ferrari, E. Donati, R. Pelliccia, D. Romano, G. J. van Vuuren, C. Stefanini, M. Morgantin, A. Campo, and T. Schmickl, “SubCULTron – Cultural development as a tool in underwater robotics,” in Artificial Life and Intelligent Agents, Cham, Switzerland: Springer Int. Pub., 2016, vol. 732, pp. 27–41.
    [10]
    T. Schmickl, R. Thenius, C. Möslinger, J. Timmis, A. Tyrrell, M. Read, J. Hilder, J. Halloy, A. Campo, C. Stefanini, L. Manfredi, S. Orofino, S. Kernbach, T. Dipper, and D. Sutantyo, “CoCoRo – The self-aware underwater swarm,” in Proc. 5th IEEE Conf. Self-Adaptive Self-Organizing Syst. Workshops (SASOW 2011), Ann Arbor, MI, USA, Oct. 2011, pp. 120–126.
    [11]
    D. Sutantyo, P. Levi, C. Moslinger, and M. Read, “Collective-adaptive Lévy flight for underwater multi-robot exploration,” in Proc. IEEE Int. Conf. Mechatronics Autom., Takamatsu, Japan, Aug. 2013, pp. 456–462.
    [12]
    F. Shkurti, A. Xu, M. Meghjani, J. C. Gamboa Higuera, Y. Girdhar, P. Giguere, B. B. Dey, J. Li, A. Kalmbach, C. Prahacs, K. Turgeon, I. Rekleitis, and G. Dudek, “Multi-domain monitoring of marine environments using a heterogeneous robot team,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Vilamoura, Portugal, Oct. 2012, pp. 1747–1753.
    [13]
    M. Zhou, R. Bachmayer, and B. Deyoung, “Underwater acoustic-based navigation towards multi-vehicle operation and adaptive oceanographic sampling,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Vilamoura, Portugal, Sep. 2017, pp. 6091–6097.
    [14]
    G. Ferri and V. Djapic, “Adaptive mission planning for cooperative autonomous maritime vehicles,” in Proc. IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, May 2013, pp. 5586–5592.
    [15]
    J. Das, T. Maughan, M. McCann, M. Godin, T. O’Reilly, M. Messié, F. Bahr, K. Gomes, F. Py, J. G. Bellingham, G. S. Sukhatme, and K. Rajan, “Towards mixed-initiative, multi-robot field experiments: Design, deployment, and lessons learned,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., San Francisco, CA, USA, Sep. 2011, pp. 3132–3139.
    [16]
    J. Leitner, “Multi-robot cooperation in space: A survey,” in Proc. Int. Conf. Autom., Robot. Control Syst. (ARCS 2009), Iasi, Romania, Jul. 2009, pp. 138–145.
    [17]
    A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: A classification focused on coordination,” IEEE Trans. Syst. Man,Cybern. B,Cybern., vol. 34, no. 5, pp. 2015–2028, 2004. doi: 10.1109/TSMCB.2004.832155
    [18]
    J. Yu, C. Wang, and G. Xie, “Coordination of multiple robotic fish with applications to underwater robot competition,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1280–1288, 2016. doi: 10.1109/TIE.2015.2425359
    [19]
    J. Shao and L. Wang, “Platform for cooperation of multiple robotic fish – Robofish Water Polo,” in Proc. IEEE Conf. Decision Control, New Orleans, LA, USA, Dec. 2007, pp. 1423–1428.
    [20]
    X. Zheng, W. Wang, C. Wang, R. Fan, and G. Xie, “An introduction of vision-based autonomous robotic fish competition,” in Proc. World Congr. Intell. Control Autom. (WCICA), Guilin, China, Jun. 2016, pp. 2561–2566.
    [21]
    R. N. Darmanin and M. K. Bugeja, “A review on multi-robot systems categorised by application domain,” in Proc. 25th Mediterranean Conf. Control Autom. (MED 2017), Valletta, Malta, Jul. 2017, pp. 701–706.
    [22]
    Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-robot coordination,” Int. J. Adv. Robot. Syst., vol. 10, no. 12, Article No. 399, 2013. doi: 10.5772/57313
    [23]
    B. T. Champion and M. A. Joordens, “Underwater swarm robotics review,” in Proc. 10th Syst. Syst. Eng. Conf. (SoSE 2015), San Antonio, TX, USA, May 2015, pp. 111–116.
    [24]
    L. Bayindir and E. Sahin, “A review of studies in swarm robotics,” Turkish J. Elect. Eng. Comput. Sci., vol. 15, no. 2, pp. 115–147, 2007.
    [25]
    L. Huang, M. Zhou, K. Hao, and E. Hou, “A survey of multi-robot regular and adversarial patrolling,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 894–903, 2019. doi: 10.1109/JAS.2019.1911537
    [26]
    R. Skjetne and T. I. Fossen, “Nonlinear maneuvering and control of ships,” in Proc. MTS/IEEE Oceans Conf. Rec., vol. 3, Honolulu, HI, USA, Nov. 2001, pp. 1808–1815.
    [27]
    J. Yu, X. Li, L. Pang, and Z. Wu, “Design and attitude control of a novel robotic jellyfish capable of 3D motion,” Sci. China Inf. Sci., vol. 62, no. 9, Article No. 194201, 2019. doi: 10.1007/s11432-018-9649-8
    [28]
    J. Xiao, J. Duan, and J. Yu, “Design and implementation of a novel biomimetic robotic jellyfish,” in Proc. IEEE Int. Conf. Robot. Biomim. (ROBIO), Xi’an, China, Dec. 2013, pp. 988–993.
    [29]
    M. Krieg, K. Nelson, J. Eisele, and K. Mohseni, “Bioinspired jet propulsion for disturbance rejection of marine robots,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2378–2385, 2018. doi: 10.1109/LRA.2018.2812219
    [30]
    F. Song, P. E. An, and A. Folleco, “Modeling and simulation of autonomous underwater vehicles: Design and implementation,” IEEE J. Ocean. Eng., vol. 28, no. 2, pp. 283–296, 2003. doi: 10.1109/JOE.2003.811893
    [31]
    Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surveys Tut., vol. 19, no. 1, pp. 204–238, 2017. doi: 10.1109/COMST.2016.2618841
    [32]
    Y. Li, S. Wang, C. Jin, Y. Zhang, and T. Jiang, “A survey of underwater magnetic induction communications: Fundamental issues, recent advances, and challenges,” IEEE Commun. Surveys Tut., vol. 21, no. 3, pp. 2466–2487, 2019. doi: 10.1109/COMST.2019.2897610
    [33]
    B. D. Jones, F. P. Chavez, B. Kieft, T. C. O’Reilly, and C. Wahl, “Field results from point to point real-time underwater acoustic tracking using a simple mathematical filter,” in Proc. IEEE/OES Auton. Underwater Vehicle Workshop (AUV), Porto, Portugal, Nov. 2018, pp. 1–5.
    [34]
    Y. Onna, T. Suzuki, H. Yamada, S. Nakagawa, and T. Wada, “A 32 kHz bandwidth, 8 branch diversity underwater acoustic OFDM communication system,” in Proc. OCEANS MTS/IEEE, Kobe, Japan, May 2018, pp. 1–5.
    [35]
    T. Matsuda, T. Maki, and T. Sakamaki, “Navigation method of multiple AUVs with velocity control for stable positioning and communication among AUVs,” in Proc. OCEANS MTS/IEEE, Marseille, France, Jun. 2019, pp. 1–5.
    [36]
    T. Shimura, Y. Kida, and M. Deguchi, “High-rate underwater acoustic communication system for SHINKAI6500,” in Proc. IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, Nov. 2018, pp. 1–5.
    [37]
    A. Y. Rodionov, S. Y. Kulik, and P. P. Unru, “Some trial results of the hydro acoustical communication system operation for AUV and ASV group control and navigation,” in Proc. OCEANS MTS/IEEE, Monterey, CA, USA, Sep. 2016, pp. 1–8.
    [38]
    S. Giodini and B. Binnerts, “Performance of acoustic communications for AUVs operating in the North Sea,” in Proc. OCEANS MTS/IEEE, Monterey, CA, USA, Sep. 2016, pp. 1–6.
    [39]
    D. Pompili and I. F. Akyildiz, “Overview of networking protocols for underwater wireless communications,” IEEE Commun. Mag., vol. 47, no. 1, pp. 97–102, 2009. doi: 10.1109/MCOM.2009.4752684
    [40]
    J. Shi, S. Zhang, and C.-J. Yang, “High frequency RF based non-contact underwater communication,” in Proc. OCEANS MTS/IEEE, Yeosu, South Korea, May 2012, pp. 1–6.
    [41]
    C. Pontbriand, N. Farr, J. Hansen, J. C. Kinsey, L.-P. Pelletier, J. Ware, and D. Fourie, “Wireless data harvesting using the AUV Sentry and WHOI optical modem,” in Proc. OCEANS MTS/IEEE, Washington, USA, Oct. 2015, pp. 1–6.
    [42]
    P. Gois, N. Sreekantaswamy, N. Basavaraju, M. Rufino, L. Sebastiao, J. Botelho, J. Gomes, and A. Pascoal, “Development and validation of blue ray, an optical modem for the MEDUSA class AUVs,” in Proc. IEEE 3rd Underwater Commun. Netw. Conf. (UComms), Lerici, Italy, Aug. 2016, pp. 1–5.
    [43]
    D. Alley, B. Cochenour, and L. Mullen, “Multistatic optical imaging system compatible with AUV platforms,” in Proc. OCEANS MTS/IEEE, Washington, USA, Oct. 2015, pp. 1–4.
    [44]
    P. A. McGillivary, V. Chirayath, and J. Baghdady, “Use of multi-spectral high repetition rate LED systems for High bandwidth underwater optical communications, and communications to surface and aerial systems,” in Proc. 4th Underwater Commun. Netw. Conf. (UComms), Lerici, Italy, Aug. 2018, pp. 1–5.
    [45]
    D. Wei, L. Yan, X. Li, J. Wang, J. Chen, M. Pan, and Y. R. Zheng, “Ferrite assisted geometry-conformal magnetic induction antenna and subsea communications for AUVs,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), vol. 1, Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.
    [46]
    D. Wei, L. Yan, C. Huang, J. Wang, J. Chen, M. Pan, and Y. Fang, “Dynamic magnetic induction wireless communications for autonomous underwater vehicle assisted underwater IoT,” IEEE Internet Things J., vol. 7, no. 10, pp. 9834–9845, 2020. doi: 10.1109/JIOT.2020.2997709
    [47]
    J. Huang, H. Fang, L. Dou, and J. Chen, “An overview of distributed high-order multi-agent coordination,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 1–9, 2014.
    [48]
    R. C. Arkin, An Behavior-Based Robotics, 1st ed, Cambridge, MA, USA: MIT Press, 1998.
    [49]
    J. Shao and L. Wang, “Cooperation of multiple fish-like microrobots based on reinforcement learning,” in Proc. IEEE Symp. Art. Life (CI-ALife 2007), Honolulu, HI, USA, Apr. 2007, no. 2, pp. 348–354.
    [50]
    J. Shao, L. Wang, and J. Yu, “Underwater transportation of multiple fish-like robots using situation based action selection,” in Proc. IEEE Int. Conf. Robot. Autom., Orlando, FL, USA, May 2006, pp. 3208–3213.
    [51]
    Y. Hu, L. Wang, J. Liang, and T. Wang, “Underwater box-pushing with multiple vision-based autonomous robotic fish,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei, China, Oct. 2010, pp. 4219–4224.
    [52]
    Y. Hu, L. Wang, J. Liang, and T. Wang, “Cooperative box-pushing with multiple autonomous robotic fish in underwater environment,” IET Control Theory Appl., vol. 5, no. 17, pp. 2015–2022, 2011. doi: 10.1049/iet-cta.2011.0018
    [53]
    J. Shao, J. Yu, Y. Fang, G. Xie, and L. Wang, “A hierarchical framework for cooperative control of multiple bio-mimetic robotic fish,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Edmonton, Alta., Canada, Aug. 2005, pp. 3289–3294.
    [54]
    X. Kang, H. Xu, and X. Feng, “Fuzzy logic based behavior fusion for multi-AUV formation keeping in uncertain ocean environment,” in Proc. OCEANS MTS/IEEE, Biloxi, MS, USA, Oct. 2009, pp. 1–7.
    [55]
    G. Ferri, A. Munafo, A. Tesei, and K. Lepage, “A market-based task allocation framework for autonomous underwater surveillance networks,” in Proc. OCEANS MTS/IEEE, Aberdeen, UK, Oct. 2017, vol. 2017, pp. 1–10.
    [56]
    Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 427–438, 2013. doi: 10.1109/TII.2012.2219061
    [57]
    Y. Jia and L. Wang, “Experimental implementation of distributed flocking algorithm for multiple robotic fish,” Control Eng. Practice, vol. 30, no. 1, Article No. 11, 2014.
    [58]
    Y. Jia and L. Wang, “Leader-follower flocking of multiple robotic fish,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 3, pp. 1372–1383, 2015. doi: 10.1109/TMECH.2014.2337375
    [59]
    B. K. Sahu and B. Subudhi, “Flocking control of multiple AUVs based on fuzzy potential functions,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2539–2551, 2018. doi: 10.1109/TFUZZ.2017.2786261
    [60]
    Y. Jia and W. Zhang, “Distributed adaptive flocking of robotic fish system with a leader of bounded unknown input,” Int. J. Control,Autom. Syst., vol. 12, no. 5, pp. 1049–1058, 2014. doi: 10.1007/s12555-013-0518-6
    [61]
    J. Shao, J. Yu, and L. Wang, “Formation control of multiple biomimetic robotic fish,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Beijing, China, Oct. 2006, pp. 2503–2508.
    [62]
    W. Zhao, Y. Hu, and L. Wang, “Leader-following formation control of multiple vision-based autonomous robotic fish,” in Proc. IEEE Conf. Decision Control, Shanghai, China, Dec. 2009, pp. 579–584.
    [63]
    H. Li, P. Xie, and W. Yan, “Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5004–5013, 2017. doi: 10.1109/TIE.2016.2589921
    [64]
    E. Yang and D. Gu, “Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles,” IEEE/ASME Trans. Mechatronics, vol. 12, no. 2, pp. 164–178, 2007. doi: 10.1109/TMECH.2007.892826
    [65]
    A. Mustafa and H. Modares, “Attack analysis and resilient control design for discrete-time distributed multi-agent systems,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 369–376, 2020. doi: 10.1109/LRA.2019.2959726
    [66]
    S. P. Hou and C. C. Cheah, “Can a simple control scheme work for a formation control of multiple autonomous underwater vehicles?” IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1090–1101, 2011. doi: 10.1109/TCST.2010.2076388
    [67]
    H. Wei, C. Shen, and Y. Shi, “Distributed Lyapunov-based model predictive formation tracking control for autonomous underwater vehicles subject to disturbances,” IEEE Trans. Syst., Man, Cybern., to be published, DOI: 10.1109/TSMC.2019.2946127.
    [68]
    H. Yang, C. Wang, and F. Zhang, “A decoupled controller design approach for formation control of autonomous underwater vehicles with time delays,” IET Control Theory Appl., vol. 7, no. 15, pp. 1950–1958, 2013. doi: 10.1049/iet-cta.2013.0072
    [69]
    J. McColgan and E. W. McGookin, “Coordination of a school of robotic fish using nearest neighbour principles,” in Proc. OCEANS MTS/IEEE, Taipei, China, Apr. 2014, pp. 1–8.
    [70]
    Z. Yan, X. Pan, Z. Yang, and L. Yue, “Formation control of leader-following multi-UUVs with uncertain factors and time-varying delays,” IEEE Access, vol. 7, pp. 118792–118805, 2019. doi: 10.1109/ACCESS.2019.2935067
    [71]
    Z. Yan, Y. Wu, X. Du, and J. Li, “Limited communication consensus control of leader-following multi-UUVs in a swarm system under multi-independent switching topologies and time delay,” IEEE Access, vol. 6, pp. 33183–33200, 2018. doi: 10.1109/ACCESS.2018.2844817
    [72]
    C. Suryendu and B. Subudhi, “Modified constrained adaptive formation control scheme for autonomous underwater vehicles under communication delays,” IET Cyber-Syst. Robot., vol. 2, no. 1, pp. 22–30, 2020. doi: 10.1049/iet-csr.2019.0027
    [73]
    J. Li and X. Z. Du, “Underactuated multi-AUV robust formation control based on virtual leader,” in Proc. IEEE Int. Conf. Mechatronics Autom., Changchun, China, Aug. 2018, pp. 1568–1573.
    [74]
    Z. Gao and G. Guo, “Fixed-Time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, 2020. doi: 10.1109/JAS.2020.1003057
    [75]
    X. Liang, X. Qu, N. Wang, Y. Li, and R. Zhang, “A novel distributed and self-organized swarm control framework for underactuated unmanned marine vehicles,” A Novel Distributed and Self-organized Swarm Control Framework for Underactuated Unmanned Marine Vehicles, vol. 7, pp. 112703–112712, 2019.
    [76]
    I. Saboori and K. Khorasani, “H consensus achievement of multi-agent systems with directed and switching topology networks,” IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 3104–3109, 2014. doi: 10.1109/TAC.2014.2358071
    [77]
    J. Cui, L. Zhao, J. Yu, and H. Yu, “Finite-time adaptive consensus tracking control algorithm for distributed multiple AUVs,” in Proc. Int. Conf. Inf., Cybern. Comput. Social Syst. (ICCSS), Dalian, China, Jun. 2017, pp. 490–495.
    [78]
    D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501–1511, 2019. doi: 10.1109/TCYB.2018.2806387
    [79]
    X. Huang and J. Dong, “Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 50, no. 1, pp. 89–99, 2020. doi: 10.1109/TSMC.2019.2894946
    [80]
    Z. Gallehdari, N. Meskin, and K. Khorasani, “A distributed control reconfiguration and accommodation for consensus achievement of multiagent systems subject to actuator faults,” IEEE Trans. Control Syst. Technol., vol. 24, no. 6, pp. 2031–2047, 2016. doi: 10.1109/TCST.2016.2526639
    [81]
    Z. Gallehdari, N. Meskin, and K. Khorasani, “Control reconfiguration for multiple autonomous vehicles subject to actuator faults and disturbances,” in Proc. Amer. Control Conf. (ACC), Boston, MA, USA, Jul. 2016, pp. 1924–1929.
    [82]
    Y. Tang, D. Zhang, P. Shi, W. Zhang, and F. Qian, “Event-based formation control for multi-agent systems under DoS attacks,” IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 452–459, 2021. doi: 10.1109/TAC.2020.2979936
    [83]
    X. Liu, D. W. Ho, Q. Song, and J. Cao, “Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances,” Nonlinear Dynamics, vol. 90, no. 3, pp. 2057–2068, 2017. doi: 10.1007/s11071-017-3782-9
    [84]
    Y. Shang, “Finite-time consensus for multi-agent systems with fixed topologies,” Int. J. Syst. Sci., vol. 43, no. 3, pp. 499–506, 2012. doi: 10.1080/00207721.2010.517857
    [85]
    S. Li and X. Wang, “Finite-time consensus and collision avoidance control algorithms for multiple AUVs,” Automatica, vol. 49, no. 11, pp. 3359–3367, 2013. doi: 10.1016/j.automatica.2013.08.003
    [86]
    J. Cui, L. Zhao, J. Yu, C. Lin, and Y. Ma, “Neural network-based adaptive finite-time consensus tracking control for multiple autonomous underwater vehicles,” IEEE Access, vol. 7, pp. 33064–33074, 2019. doi: 10.1109/ACCESS.2019.2903833
    [87]
    Z. Gao and G. Guo, “Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications,” IEEE Access, vol. 6, pp. 27902–27911, 2018. doi: 10.1109/ACCESS.2018.2838121
    [88]
    W. Xing, Y. Zhao, and H. R. Karimi, “Convergence analysis on multi-AUV systems with leader-follower architecture,” IEEE Access, vol. 5, pp. 853–868, 2017. doi: 10.1109/ACCESS.2017.2651048
    [89]
    M. Liu, B. Xu, and X. Peng, “Cooperative path planning for multi-AUV in time-varying ocean flows,” J. Syst. Eng. Electron., vol. 27, no. 3, pp. 612–618, 2016. doi: 10.1109/JSEE.2016.00065
    [90]
    Z. Zeng, K. Sammut, L. Lian, A. Lammas, F. He, and Y. Tang, “Rendezvous path planning for multiple autonomous marine vehicles,” IEEE J. Ocean. Eng., vol. 43, no. 3, pp. 640–664, 2018. doi: 10.1109/JOE.2017.2723058
    [91]
    X. Yu, W. N. Chen, X. M. Hu, T. Gu, H. Yuan, Y. Zhou, and J. Zhang, “Path planning in multiple-AUV systems for difficult target traveling missions: A hybrid metaheuristic approach,” IEEE Trans. Cogn. Develop. Syst., vol. 12, no. 3, pp. 561–574, 2020. doi: 10.1109/TCDS.2019.2944945
    [92]
    D. Zhu, H. Huang, and S. X. Yang, “Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 504–514, 2013. doi: 10.1109/TSMCB.2012.2210212
    [93]
    M. Chen and D. Zhu, “A workload balanced algorithm for task assignment and path planning of inhomogeneous autonomous underwater vehicle system,” IEEE Trans. Cogn. Develop. Syst., vol. 11, no. 4, pp. 483–493, 2019. doi: 10.1109/TCDS.2018.2866984
    [94]
    P. Yao, Z. Zhao, and Q. Zhu, “Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment,” IEEE Syst. J., vol. 14, no. 3, pp. 3185–3193, 2020. doi: 10.1109/JSYST.2019.2937346
    [95]
    B. Sabetghadam, R. Cunha, and A. Pascoal, “Cooperative motion planning with time, energy and active navigation constraints,” in Proc. IEEE/OES Auton. Underwater Veh. Workshop, Porto, Portugal, Nov. 2018, pp. 1–6.
    [96]
    B. Chow, C. M. Clark, and J. P. Huissoon, “Assigning closely spaced targets to multiple autonomous underwater vehicles,” J. Ocean. Technol., vol. 6, no. 1, pp. 56–78, 2011.
    [97]
    E. Simetti , G. Casalino, S. Torelli, A Sperindé, and A. Turetta, “Floating underwater manipulation: Developed control methodology and experimental validation within the TRIDENT project,” J. Field Robot., vol. 31, no. 3, pp. 364–385, 2014. doi: 10.1002/rob.21497
    [98]
    D. Zhang, L. Wang, and J. Yu, “A coordination method for multiple biomimetic robotic fish in underwater transport task,” in Proc. Amer. Control Conf., New York, NY, USA, Jul. 2007, pp. 1870–1875.
    [99]
    D. Zhang, L. Wang, J. Yu, and M. Tan, “Coordinated transport by multiple biomimetic robotic fish in underwater environment,” IEEE Trans. Control Syst. Technol., vol. 15, no. 4, pp. 658–671, 2007. doi: 10.1109/TCST.2007.899153
    [100]
    E. Simetti and G. Casalino, “Manipulation and transportation with cooperative underwater vehicle manipulator systems,” IEEE J. Ocean. Eng., vol. 42, no. 4, pp. 782–799, 2017. doi: 10.1109/JOE.2016.2618182
    [101]
    J. Kim, “Cooperative localization and unknown currents estimation using multiple autonomous underwater vehicles,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2365–2371, 2020. doi: 10.1109/LRA.2020.2972889
    [102]
    T. Matsuda, T. Maki, and T. Sakamaki, “Accurate and efficient seafloor observations with multiple autonomous underwater vehicles: Theory and experiments in a hydrothermal vent field,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2333–2339, 2019. doi: 10.1109/LRA.2019.2902744
    [103]
    S. Fan, Y. Zhang, C. Yu, M. Zhu, and F. Yu, “An advanced cooperative positioning algorithm based on improved factor graph and sum-product theory for multiple AUVs,” IEEE Access, vol. 7, pp. 67006–67017, 2019. doi: 10.1109/ACCESS.2019.2918586
    [104]
    S. Fan, Y. Zhang, Q. Hao, P. Jiang, C. Yu, and F. Yu, “Cooperative positioning for multi-AUVs based on factor graph and maximum correntropy,” IEEE Access, vol. 7, pp. 153327–153337, 2019. doi: 10.1109/ACCESS.2019.2948864
    [105]
    D. Wu, Z. Yan, and T. Chen, “Cooperative current estimation based multi-AUVs localization for deep ocean applications,” Ocean Eng., vol. 188, no. 106, Article No. 148, 2019.
    [106]
    E. M. Fischell, A. R. Kroo, and B. W. O’Neill, “Single-hydrophone low-cost underwater vehicle swarming,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 354–361, 2020. doi: 10.1109/LRA.2019.2958774
    [107]
    F. Zhang and N. E. Leonard, “Cooperative filters and control for cooperative exploration,” IEEE Trans. Autom. Control, vol. 55, no. 3, pp. 650–663, 2010. doi: 10.1109/TAC.2009.2039240
    [108]
    R. Cui, Y. Li, and W. Yan, “Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*,” IEEE Trans. Syst.,Man,Cybern., vol. 46, no. 7, pp. 993–1004, 2016. doi: 10.1109/TSMC.2015.2500027
    [109]
    S. Lv and Y. Zhu, “A multi-AUV searching algorithm based on neuron network with obstacle,” in Proc. 3rd Int. Symp. Auton. Syst. (ISAS), Shanghai, China, May 2019, pp. 131–136.
    [110]
    C. Lin, G. Han, M. Guizani, Y. Bi, J. Du, and L. Shu, “An SDN architecture for AUV-based underwater wireless networks to enable cooperative underwater search,” IEEE Wireless Commun. Lett., vol. 27, no. 3, pp. 132–139, 2020. doi: 10.1109/MWC.001.1900387
    [111]
    G. A. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. S. Sukhatme, “Distributed data fusion for multirobot search,” IEEE Trans. Robot., vol. 31, no. 1, pp. 55–66, 2015. doi: 10.1109/TRO.2014.2378411
    [112]
    M. Haire, X. Xu, L. Alboul, J. Penders, and H. Zhang, “Ship hull repair using a swarm of autonomous underwater robots: A self-assembly algorithm,” in Proc. European Conf. Mobile Robot. (ECMR), Wurzburg, Germany, Sep. 2019, pp. 1–6.
    [113]
    M. Chen and D. Zhu, “A novel cooperative hunting algorithm for inhomogeneous multiple autonomous underwater vehicles,” IEEE Access, vol. 6, pp. 7818–7828, 2018. doi: 10.1109/ACCESS.2018.2801857
    [114]
    Z. Huang, D. Zhu, and B. Sun, “A multi-AUV cooperative hunting method in 3D underwater environment with obstacle,” Eng. Appl. Art. Intell., vol. 50, pp. 192–200, 2016. doi: 10.1016/j.engappai.2016.01.036
    [115]
    S. Yoon and C. Qiao, “Cooperative search and survey using autonomous underwater vehicles (AUVs),” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 3, pp. 364–379, 2011. doi: 10.1109/TPDS.2010.88
    [116]
    V. Yordanova, H. Griffiths, and S. Hailes, “Rendezvous planning for multiple autonomous underwater vehicles using a Markov decision process,” IET Radar,Sonar Navigation, vol. 11, no. 12, pp. 1762–1769, 2017. doi: 10.1049/iet-rsn.2017.0098
    [117]
    L. F. Zapata-Rivera, C. Aranzazu-Suescun, and I. Mahgoub, “An energy-aware collaborative multi-agent system for autonomous underwater vehicles,” in Proc. IEEE 36th Int. Performance Comput. Commun. Conf. (IPCCC), San Diego, CA, USA, Dec. 2017, pp. 1–8.
    [118]
    A. Amory, B. Meyer, C. Osterloh, T. Tosik, and E. Maehle, “Towards fault-tolerant and energy-efficient swarms of underwater robots,” in Proc. IEEE Int. Symp. Parallel & Distributed Process. Workshops Ph.D. Forum, Cambridge, MA, USA, May 2013, pp. 1550–1553.
    [119]
    G. a. Hollinger, S. Choudhary, P. Qarabaqi, C. Murphy, U. Mitra, G. S. Sukhatme, M. Stojanovic, H. Singh, and F. Hover, “Underwater data collection using robotic sensor networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 5, pp. 899–911, 2012. doi: 10.1109/JSAC.2012.120606
    [120]
    X. Cao, C. Sun, and M. Yan, “Target search control of AUV in underwater environment with deep reinforcement learning,” IEEE Access, vol. 7, pp. 96549–96559, 2019. doi: 10.1109/ACCESS.2019.2929120
    [121]
    M. Sporyshev and A. Scherbatyuk, “Reinforcement learning approach for cooperative AUVs in underwater surveillance operations,” in Proc. IEEE Int. Underwater Technol., Kaohsiung, China, Apr. 2019, pp. 1–4.
    [122]
    P. Sun and A. Boukerche, “Modeling and analysis of coverage degree and target detection for autonomous underwater vehicle based system,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9959–9971, 2018. doi: 10.1109/TVT.2018.2864141
    [123]
    Y. Li, Y. Wang, W. Yu, and X. Guan, “Multiple autonomous underwater vehicle cooperative localization in anchor-free environments,” IEEE J. Ocean. Eng., vol. 44, no. 4, pp. 895–911, 2019. doi: 10.1109/JOE.2019.2935516
    [124]
    A. Munafò, G. Ferri, K. Lepage, and R. Goldhahn, “AUV active perception: Exploiting the water column,” in Proc. IEEE OCEANS , Aberdeen, UK, Oct. 2017, vol. 2017, pp. 1–8.
    [125]
    L. Cai, Q. Sun, T. Xu, Y. Ma, and Z. Chen, “Multi-AUV collaborative target recognition based on transfer-reinforcement learning,” IEEE Access, vol. 8, pp. 39273–39284, 2020. doi: 10.1109/ACCESS.2020.2976121
    [126]
    Q. Hu, C. Wei, Y. Liu, and Z. Zhen, “A review of biomimetic artificial lateral line detection technology for unmanned underwater vehicles,” in Proc. Int. Conf. Intell. Robot. Appl. (ICIRA), Shenyang, China, Aug. 2019, vol. 11741, pp. 501–516.
    [127]
    I. Jawhar, N. Mohamed, J. Al-Jaroodi, and S. Zhang, “An architecture for using autonomous underwater vehicles in wireless sensor networks for underwater pipeline monitoring,” IEEE Trans. Ind. Informat., vol. 15, no. 3, pp. 1329–1340, 2019. doi: 10.1109/TII.2018.2848290
    [128]
    H. Zhu and M. Zhou, “Role-based collaboration and its kernel mechanisms,” IEEE Trans. Syst.,Man,Cybern. C,Appl. Rev., vol. 36, no. 4, pp. 578–589, 2006. doi: 10.1109/TSMCC.2006.875726
    [129]
    H. Zhu, M. Zhou, and R. Alkins, “Group role assignment via a Kuhn-Munkres algorithm-based solution,” IEEE Trans. Syst.,Man,Cybern. A,Syst.,Humans, vol. 42, no. 3, pp. 739–750, 2012. doi: 10.1109/TSMCA.2011.2170414
    [130]
    H. Zhu, “Avoiding conflicts by group role assignment,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 4, pp. 535–547, 2016. doi: 10.1109/TSMC.2015.2438690
    [131]
    H. Zhu, “Group multi-role assignment with conflicting roles and agents,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1498–1510, 2020. doi: 10.1109/JAS.2020.1003354

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (5919) PDF downloads(374) Cited by()

    Highlights

    • Present a novel taxonomy and comprehensive survey to Underwater Multi-Robot Systems (UMRS) from the perspective of the emergence of new functions
    • Categorize the cooperation of UMRS in terms of task-space, motion-space, measurement-space, as well as their combination
    • Provide valuable insights into the reasonable utilization of UMRS to attain diverse underwater tasks in complex ocean application scenarios

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return