IEEE/CAA Journal of Automatica Sinica
Citation: | X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 990–1004, Jun. 2022. doi: 10.1109/JAS.2021.1004263 |
[1] |
Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 427–438, Feb. 2013. doi: 10.1109/TII.2012.2219061
|
[2] |
K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, Mar. 2015. doi: 10.1016/j.automatica.2014.10.022
|
[3] |
X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, and X.-M. Zhang, “Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques,” IEEE Trans. Syst. Man Cybern.,Syst., vol. 50, no. 9, pp. 3112–3125, Sep. 2020. doi: 10.1109/TSMC.2020.3010825
|
[4] |
Z. Peng, J. Wang, D. Wang, and Q.-L. Han, “An overview of recent advances in coordinated control of multiple autonomous surface vehicles,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 732–745, Feb. 2021. doi: 10.1109/TII.2020.3004343
|
[5] |
S. Coogan and M. Arcak, “Scaling the size of a formation using relative position feedback,” Automatica, vol. 48, no. 10, pp. 2677–2685, Oct. 2012. doi: 10.1016/j.automatica.2012.06.083
|
[6] |
S.-M. Kang and H.-S. Ahn, “Design and realization of distributed adaptive formation control law for multi-agent systems with moving leader,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1268–1279, Feb. 2016. doi: 10.1109/TIE.2015.2504041
|
[7] |
X. Ge and Q.-L. Han, “Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8118–8127, Oct. 2017. doi: 10.1109/TIE.2017.2701778
|
[8] |
S. Zhao, “Affine formation maneuver control of multiagent systems,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4140–4155, Dec. 2018. doi: 10.1109/TAC.2018.2798805
|
[9] |
Z. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057
|
[10] |
X. Ge, Q.-L. Han, and X.-M. Zhang, “Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3417–3426, Apr. 2018. doi: 10.1109/TIE.2017.2752148
|
[11] |
M. Porfiri, D. Roberson, and D. Stilwell, “Tracking and formation control of multiple autonomous agents: A two-level consensus approach,” Automatica, vol. 43, no. 8, pp. 1318–1328, Aug. 2007. doi: 10.1016/j.automatica.2007.01.004
|
[12] |
J. Lü, F. Chen, and G. Chen, “Nonsmooth leader-following formation control of nonidentical multi-agent systems with directed communication topologies,” Automatica, vol. 64, pp. 112–120, Feb. 2016. doi: 10.1016/j.automatica.2015.11.004
|
[13] |
J. Hu, P. Bhowmick, and A. Lanzon, “Distributed adaptive time-varying group formation tracking for multiagent systems with multiple leaders on directed graphs,” IEEE Trans. Control Network Syst., vol. 7, no. 1, pp. 140–150, Mar. 2020. doi: 10.1109/TCNS.2019.2913619
|
[14] |
G. Wen, C. Chen, and Y.-J. Liu, “Formation control with obstacle avoidance for a class of stochastic multiagent systems,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5847–5855, Jul. 2018. doi: 10.1109/TIE.2017.2782229
|
[15] |
Y. Yang, X. Si, D. Yue, and J. Tan, “Time-varying formation tracking of uncertain non-affine nonlinear multi-agent systems with communication delays,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 2501–2509, Mar. 2021. doi: 10.1109/TIE.2020.2975463
|
[16] |
X. Dong, Y. Li, C. Lu, G. Hu, Q. Li, and Z. Ren, “Time-varying formation tracking for UAV swarm systems with switching directed topologies,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3674–3685, Dec. 2019. doi: 10.1109/TNNLS.2018.2873063
|
[17] |
Y. Chen, R. Yu, Y. Zhang, and C. Lin, “Circular formation flight control for unmanned aerial vehicles with directed network and external disturbance,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 505–516, Mar. 2020. doi: 10.1109/JAS.2019.1911669
|
[18] |
X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, Jan. 2022.
|
[19] |
S. Xiao, X. Ge, Q.-L. Han, and Y. Zhang, “Secure distributed adaptive platooning control for automated vehicles over vehicular ad-hoc networks under DoS attacks,” IEEE Trans. Cybern., 2021. DOI: 10.1109/TCYB.2021.3074318
|
[20] |
Y. Wang, Y. Song, and W. Ren, “Distributed adaptive finite-time approach for formation-containment control of networked nonlinear systems under directed topology,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 3164–3175, Jul. 2018.
|
[21] |
A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control using dynamic event-triggering mechanism for multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sep. 2020.
|
[22] |
B.-B. Hu, H.-T. Zhang, and J. Wang, “Multiple-target surrounding and collision avoidance with second-order nonlinear multi-agent systems,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7454–7463, Aug. 2021. doi: 10.1109/TIE.2020.3000092
|
[23] |
S. Zuo and D. Yue, “Resilient output formation containment of heterogeneous multigroup systems against unbounded attacks,” IEEE Trans. Cybern., vol. 52, no. 3, pp. 1902–1910, Mar. 2022.
|
[24] |
H. Zhang and F. Lewis, “Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics,” Automatica, vol. 48, no. 7, pp. 1432–1439, Jul. 2012. doi: 10.1016/j.automatica.2012.05.008
|
[25] |
Z. Peng, D. Wang, H. Zhang, and G. Sun, “Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 1508–1519, Aug. 2014.
|
[26] |
F. Gao, W. Chen, Z. Li, J. Li, and B. Xu, “Neural network-based distributed cooperative learning control for multiagent systems via event-triggered communication,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 2, pp. 407–419, Feb. 2020. doi: 10.1109/TNNLS.2019.2904253
|
[27] |
H. Liang, G. Liu, H. Zhang, and T. Huang, “Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2239–2250, May 2021. doi: 10.1109/TNNLS.2020.3003950
|
[28] |
Y. Liu, D. Yao, H. Li, and R. Lu, “Distributed cooperative compound tracking control for a platoon of vehicles with adaptive NN,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.3044883
|
[29] |
G. Dong, H. Li, H. Ma, and R. Lu, “Finite-time consensus tracking neural network FTC of multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 653–662, Feb. 2021. doi: 10.1109/TNNLS.2020.2978898
|
[30] |
Z. Li, L. Gao, W. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, Jan. 2020. doi: 10.1109/JAS.2019.1911858
|
[31] |
L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE Trans. Robotics, vol. 33, no. 3, pp. 661–674, Jun. 2017. doi: 10.1109/TRO.2017.2659727
|
[32] |
J. Fu, G. Wen, X. Yu, and Z.-G. Wu, “Distributed formation navigation of constrained second-order multiagent systems with collision avoidance and connectivity maintenance,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2149–2162, Apr. 2022.
|
[33] |
W. Dunbar and R. Murray, “Distributed receding horizon control for multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549–558, Apr. 2006. doi: 10.1016/j.automatica.2005.12.008
|
[34] |
P. Wang and B. Ding, “Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems,” IEEE Trans. Autom. Control, vol. 59, no. 6, pp. 1439–1453, Jun. 2014. doi: 10.1109/TAC.2014.2304175
|
[35] |
E. Hernandez-Martinez and E. Aranda-Bricaire, “Convergence and collision avoidance in formation control: A survey of the artificial potential functions approach, ” in Multi-Agent Systems: Modeling, Control, Programming, Simulations and Applications, F. Alkhateeb, E. A. Maghayreh, and I. A. Doush, Eds. Princeton, NJ: InTech, 2011, ser. Robotics. Multiagent Systems, pp. 103–126, ch. 6.
|
[36] |
H. Rezaee and F. Abdollahi, “A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 347–354, Jan. 2014. doi: 10.1109/TIE.2013.2245612
|
[37] |
S. Ajwad, E. Moulay, M. Defoort, T. Ménard, and P. Coirault, “Collision-free formation tracking of multi-agent systems under communication constraints,” IEEE Control Syst. Lett., vol. 5, no. 4, pp. 1345–1350, Oct. 2021. doi: 10.1109/LCSYS.2020.3036809
|
[38] |
Z.-H. Pang, C.-B. Zheng, J. Sun, Q.-L. Han, and G.-P. Liu, “Distance- and velocity-based collision avoidance for time-varying formation control of second-order multi-agent systems,” IEEE Trans. Circuits Syst. II,Exp. Briefs, vol. 68, no. 4, pp. 1253–1257, Apr. 2021. doi: 10.1109/TCSII.2020.3022371
|
[39] |
S. Huang, R. Teo, and K. Tan, “Collision avoidance of multi unmanned aerial vehicles: A review,” Annu. Rev. Control, vol. 48, pp. 147–164, Oct. 2019. doi: 10.1016/j.arcontrol.2019.10.001
|
[40] |
Z. Li, G. Wen, Z. Duan, and W. Ren, “Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152–1157, Apr. 2015. doi: 10.1109/TAC.2014.2350391
|
[41] |
Z. Peng, D. Wang, and J. Wang, “Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 9, pp. 2156–2167, Sep. 2017.
|
[42] |
P. Du, Y. Pan, H. Li, and H.-K. Lam, “Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2088–2099, Aug. 2021.
|
[43] |
C. Wang, X. Wang, and H. Ji, “Leader-following consensus for an integrator-type nonlinear multi-agent systems using distributed adaptive protocol, ” in Proc. 10th IEEE Int. Conf. Control and Automation, 2013, pp. 1166–1171.
|
[44] |
F. Lewis, S. Jagannathan, and A. Yesildirak, Neural Network Control of Robot Manipulators and Nonlinear Systems, Philadelphia, PA, USA: CRC Press, 1998.
|
[45] |
C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27, 2019. doi: 10.1016/j.automatica.2019.03.009
|
[46] |
X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
|
[47] |
X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered control and estimation: A survey,” Int. J. Autom. Comput., vol. 18, no. 6, pp. 857–886, Dec. 2021.
|