IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Deng, V. Léchappé, C. D. Zhang, E. Moulay, D. J. Du, F. Plestan, and Q.-L. Han, “Designing discrete predictor-based controllers for networked control systems with time-varying delays: Application to a visual servo inverted pendulum system,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1763–1777, Oct. 2022. doi: 10.1109/JAS.2021.1004249 |
[1] |
G. Hee Lee, F. Faundorfer, and M. Pollefeys, “Motion estimation for self-driving cars with a generalized camera,” in Proc. IEEE Comput. Soc. Conf. Compu. Vision Pattern Recognit., Portland, Oregon, USA, 2013, pp. 2746–2753.
|
[2] |
R. W. Wolcott and R. M. Eustice, “Visual localization within lidar maps for automated urban driving,” in Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst, Chicago, Illinois, USA, 2014, pp. 176–183.
|
[3] |
H. Wang, C. Vasseur, N. Christov, and V. Koncar, “Vision servoing of robot systems using piecewise continuous controllers and observers,” Mech. Syst. Signal. Process., vol. 33, pp. 132–141, 2012. doi: 10.1016/j.ymssp.2012.06.022
|
[4] |
C. Miao and J. Li, “Autonomous landing of small unmanned aerial rotorcraft based on monocular vision in GPS-denied area,” IEEE/CAA J. Autom. Sinca, vol. 2, no. 1, pp. 109–114, 2015. doi: 10.1109/JAS.2015.7032912
|
[5] |
S. Kizir, H. Ocak, Z. Bingul, and C. Oysu, “Time delay compensated vision based stabilization control of an inverted pendulum,” Int. J. Innov. Comput. Inf. Control, vol. 8, no. 12, pp. 8133–8145, 2012.
|
[6] |
G. Zhan, D. Du, and M. Fei, “Stability and stabilization for visual servo inverted pendulum system with random image processing time delay,” in Proc. 43rd IECON - Annu. Conf. IEEE Ind. Electron. Soc., Beijing, China, 2017, pp. 4325–4330.
|
[7] |
D. Du, C. Zhang, Y. Song, H. Zhou, X. Li, M. Fei, and W. Li, “Real-time H∞ control of networked inverted pendulum visual servo systems,” IEEE Trans. Cybern., 2019. vol. 50, no. 12, pp. 5113–5126, 2020.
|
[8] |
A. Garcia, E. Mattison, and K. Ghose, “High-speed vision-based autonomous indoor navigation of a quadcopter,” in Proc. Int. Conf. Unmanned Aircr. Syst, ICUAS, Denver, CO, USA: IEEE, 2015, pp. 338–347.
|
[9] |
K. McGuire, G. De Croon, C. De Wagter, K. Tuyls, and H. Kappen, “Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone,” IEEE Robot. Autom., vol. 2, no. 2, pp. 1070–1076, 2017. doi: 10.1109/LRA.2017.2658940
|
[10] |
J. Horalek, T. Svoboda, and F. Holik, “Analysis of the wireless communication latency and its dependency on a data size,” in Proc. 17th IEEE Int. Symp. Computat. Intell. Inform., Budapest, Hungary, 2016, pp. 145–150.
|
[11] |
X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, 2020. doi: 10.1109/JAS.2019.1911861
|
[12] |
A. Ramirez, E. S. Espinoza, L. G. Carrillo, S. Mondié, A. García, and R. Lozano, “Stability analysis of a vision-based UAV controller: An application to autonomous road following missions,” J. Intell. Rob. Syst. Theor. Appl., vol. 74, no. 1–2, pp. 69–84, 2014. doi: 10.1007/s10846-013-9946-z
|
[13] |
H. Wu, L. Lou, C.-C. Chen, S. Hirche, and K. Kühnlenz, “Cloud-based networked visual servo control,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 554–566, 2012.
|
[14] |
X.-M. Zhang, Q.-L. Han, and X. Yu, “Survey on recent advances in networked control systems,” IEEE Trans. Ind. Informat., vol. 12, no. 5, pp. 1740–1752, 2016. doi: 10.1109/TII.2015.2506545
|
[15] |
K. Liu, A. Selivanov, and E. Fridman, “Survey on time-delay approach to networked control,” Annu. Rev. Control, vol. 48, pp. 57–79, 2019. doi: 10.1016/j.arcontrol.2019.06.005
|
[16] |
M. B. Cloosterman, N. Van de Wouw, W. Heemels, and H. Nijmeijer, “Stability of networked control systems with uncertain time-varying delays,” IEEE Trans. Autom. Control, vol. 54, no. 7, pp. 1575–1580, 2009. doi: 10.1109/TAC.2009.2015543
|
[17] |
S. Hu and Q. Zhu, “Stochastic optimal control and analysis of stability of networked control systems with long delay,” Automatica, vol. 39, no. 11, pp. 1877–1884, 2003. doi: 10.1016/S0005-1098(03)00196-1
|
[18] |
V. Léchappé, E. Moulay, F. Plestan, and Q.-L. Han, “Discrete predictor-based event-triggered control of networked control systems,” Automatica, vol. 107, pp. 281–288, 2019. doi: 10.1016/j.automatica.2019.05.051
|
[19] |
W. Heemels, D. Nešić, A. R. Teel, and N. van de Wouw, “Networked and quantized control systems with communication delays,” in Proc. 48th IEEE Conf. Decis. Control, Shanghai, China, 2009, pp. 7929–7935.
|
[20] |
D. Yue, Q.-L. Han, and J. Lam, “Network-based robust H∞ control of systems with uncertainty,” Automatica, vol. 41, no. 6, pp. 999–1007, 2005. doi: 10.1016/j.automatica.2004.12.011
|
[21] |
D. Yue, E. Tian, and Q.-L. Han, “A delay system method for designing event-triggered controllers of networked control systems,” IEEE Trans. Autom. Control, vol. 58, no. 2, pp. 475–481, 2013. doi: 10.1109/TAC.2012.2206694
|
[22] |
A. Selivanov and E. Fridman, “Predictor-based networked control under uncertain transmission delays,” Automatica, vol. 70, pp. 101–108, 2016. doi: 10.1016/j.automatica.2016.03.032
|
[23] |
H. Y. Shao, J. R. Zhao, and D. Zhang, “Novel stability criteria for sampled-data systems with variable sampling periods,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 257–262, 2020.
|
[24] |
A. Selivanov and E. Fridman, “Observer-based input-to-state stabilization of networked control systems with large uncertain delays,” Automatica, vol. 74, pp. 63–70, 2016. doi: 10.1016/j.automatica.2016.07.031
|
[25] |
R. Lozano, P. Castillo, P. Garcia, and A. Dzul, “Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter,” Automatica, vol. 40, no. 4, pp. 603–612, 2004. doi: 10.1016/j.automatica.2003.10.007
|
[26] |
Y.-J. Pan, H. Marquez, and T. Chen, “Stabilization of remote control systems with unknown time varying delays by LMI techniques,” Int. J. Control, vol. 79, no. 07, pp. 752–763, 2006. doi: 10.1080/00207170600654554
|
[27] |
C. Ionete, A. Cela, M. B. Gaid, and A. Reama, “Controllability and observability of linear discrete-time systems with network induced variable delay,” IFAC Proc. Vol. (IFAC-PapersOnline)
|
[28] |
W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, 2001. doi: 10.1109/37.898794
|
[29] |
T. Cooklev, J. C. Eidson, and A. Pakdaman, “An implementation of IEEE 1588 over IEEE 802.11 b for synchronization of wireless local area network nodes,” IEEE Trans. Instrum. Meas., vol. 56, no. 5, pp. 1632–1639, 2007. doi: 10.1109/TIM.2007.903640
|
[30] |
K. J. Aström and B. Wittenmark, Computer-controlled Systems: Theory and Design, Third Edition. Mineola, New York, NY, USA: Dover Publications, Inc., 2011.
|
[31] |
I. Karafyllis, M. Malisoff, F. Mazenc, and P. Pepe, Recent Results on Nonlinear Delay Control Systems. Cham, Switzerland: Springer International Publishing, 2016.
|
[32] |
J. Li, Q. Zhang, and M. Cai, “Modelling and robust stability of networked control systems with packet reordering and long delay,” Int. J. Control, vol. 82, no. 10, pp. 1773–1785, 2009. doi: 10.1080/00207170902729898
|
[33] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, PA, USA: SIAM: Society for Industrial and Applied Mathematics, 2000, vol. 71.
|
[34] |
Y. Solgi, A. Fatehi, and A. Shariati, “Non monotonic Lyapunov-Krasovskii functional approach to stability analysis and stabilization of discrete time-delay systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 752–763, 2020.
|
[35] |
B. A. Francis and T. T. Georgiou, “Stability theory for linear time-invariant plants with periodic digital controllers,” IEEE Trans. Autom. Control, vol. 33, no. 9, pp. 820–832, 1988. doi: 10.1109/9.1310
|
[36] |
M. Lazar, W.P. H. Heemels, and A. R. Teel, “Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems,” IEEE Trans. Autom. Control, vol. 54, no. 10, pp. 2421–2425, 2009. doi: 10.1109/TAC.2009.2029297
|
[37] |
R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15, 1972. doi: 10.1145/361237.361242
|
[38] |
L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, “Recent developments on the stability of systems with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309–335, 2017. doi: 10.1016/j.automatica.2016.10.023
|
[39] |
D. Du, W. Li, B. Zhan, M. Fei, and T. Yang, “Experimental performance analysis of inverted pendulum platform,” in Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. Singapore: Springer Singapore, 2016, pp. 431–440.
|
[40] |
Y. M. Cheng, X. Zhang, T. H. Liu, and C. H. Wang, “Finite-time control of discrete-time systems with variable quantization density in networked channels,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1394–1402, 2020.
|
[41] |
K. Bansal and P. Mukhija, “Aperiodic sampled-data control of distributed networked control systems under stochastic cyber-attacks,” IEEE/CAA J. Autom. Sinca, vol. 7, no. 4, pp. 1064–1073, 2020. doi: 10.1109/JAS.2020.1003249
|
[42] |
G. Franzè, D. Famularo, W. Lucia, and F. Tedesco, “A resilient control strategy for cyber-physical systems subject to denial of service attacks: A leader-follower set-theoretic approach,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1204–1214, 2020.
|