IEEE/CAA Journal of Automatica Sinica
Citation: | Z. W. Hao, X. K. Yue, H. W. Wen, and C. Liu, “Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 482–495, Mar. 2022. doi: 10.1109/JAS.2021.1004216 |
[1] |
G. Curzi, D. Modenini, and P. Tortora, “Large constellations of small satellites: A survey of near future challenges and missions,” Aerospace, vol. 7, no. 9, p. 133, 2020.
|
[2] |
K. Shi, C. Liu, J. D. Biggs, Z. Sun, and X. Yue, “Observer-based control for spacecraft electromagnetic docking,” Aerospace Science and Technology, vol. 99, p. 105759, 2020.
|
[3] |
W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658, 1960. doi: 10.2514/8.8704
|
[4] |
D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft formation flying guidance and control. Part II: Control,” in Proc. IEEE American Control Conf., 2004, pp. 2976–2985.
|
[5] |
H. Wong, V. Kapila, and A. G. Sparks, “Adaptive output feedback tracking control of spacecraft formation,” Int. Journal of Robust and Nonlinear Control, vol. 12, no. 2–3, pp. 117–139, 2002. doi: 10.1002/rnc.679
|
[6] |
J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall Englewood Cliffs, NJ, 1991.
|
[7] |
N. Vafamand, “Adaptive robust neural-network-based backstepping control of tethered satellites with additive stochastic noise,” IEEE Trans. Aerospace and Electronic Systems, vol. 56, no. 5, pp. 3922–3930, 2020. doi: 10.1109/TAES.2020.2985276
|
[8] |
R. Haghighi and C. K. Pang, “Robust concurrent attitude-position control of a swarm of underactuated nanosatellites,” IEEE Trans. Control Systems Technology, vol. 26, no. 1, pp. 77–88, 2018. doi: 10.1109/TCST.2017.2656025
|
[9] |
M. D. Queiroz, V. Kapila, and Q. Yan, “Adaptive nonlinear control of multiple spacecraft formation flying,” Journal of Guidance Control and Dynamics, vol. 23, pp. 385–390, 2000. doi: 10.2514/2.4549
|
[10] |
L. Sun and Z. Zheng, “Adaptive relative pose control of spacecraft with model couplings and uncertainties,” Acta Astronautica, vol. 143, pp. 29–36, 2018. doi: 10.1016/j.actaastro.2017.11.006
|
[11] |
Weiping, J. J. Li, E., and Slotine, “Indirect adaptive robot control,” in Proc. IEEE Int. Conf. Robotics & Automation, vol. 2, 1988, pp. 704–709.
|
[12] |
W. Bai, T. Li, and S. Tong, “NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems,” IEEE Trans. Cybernetics, vol. 50, no. 11, pp. 4573–4584, 2020.
|
[13] |
J. Huang, W. Wang, C. Wen, and J. Zhou, “Adaptive control of a class of strict-feedback time-varying nonlinear systems with unknown control coefficients,” Automatica, vol. 93, pp. 98–105, 2018. doi: 10.1016/j.automatica.2018.03.061
|
[14] |
P. A. Ioannou and P. V. Kokotovic, “Instability analysis and improvement of robustness of adaptive control,” Automatica, vol. 20, no. 5, pp. 583–594, 1984. doi: 10.1016/0005-1098(84)90009-8
|
[15] |
S. Yin, H. Yang, H. Gao, J. Qiu, and O. Kaynak, “An adaptive NN-based approach for fault-tolerant control of nonlinear time-varying delay systems with unmodeled dynamics,” IEEE Trans. Neural Networks and Learning Systems, vol. 28, no. 8, pp. 1902–1913, 2016.
|
[16] |
H. Sun, H. Zhao, K. Huang, S. Zhen, and Y.-H. Chen, “Adaptive robust constraint-following control for satellite formation flying with system uncertainty,” Journal of Guidance,Control,and Dynamics, vol. 40, no. 6, pp. 1492–1502, 2017. doi: 10.2514/1.G002396
|
[17] |
A. Astolfi and R. Ortega, “Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems,” IEEE Trans. Automatic Control, vol. 48, no. 4, pp. 590–606, 2003. doi: 10.1109/TAC.2003.809820
|
[18] |
A. Astolfi, D. Karagiannis, and R. Ortega, “Stabilization of uncertain nonlinear systems via immersion and invariance,” Eur. J. Control, vol. 13, pp. 204–220, 2007. doi: 10.3166/ejc.13.204-220
|
[19] |
D. Seo and M. R. Akella, “High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design,” Journal of Guidance Control &Dynamics, vol. 31, no. 4, pp. 884–891, 2008.
|
[20] |
K. W. Lee and S. Singh, “Noncertainty-equivalence spacecraft adaptive formation control with filtered signals,” Journal of Aerospace Engineering, vol. 30, p. 04017029, 2017.
|
[21] |
P. Krishnamurthy and F. Khorrami, “Dynamic high-gain scaling: State and output feedback with application to systems with iss appended dynamics driven by all states,” IEEE Trans. Automatic Control, vol. 49, no. 12, pp. 2219–2239, 2004. doi: 10.1109/TAC.2004.839235
|
[22] |
D. Karagiannis, M. Sassano, and A. Astolfi, “Dynamic scaling and observer design with application to adaptive control,” Automatica, vol. 45, no. 12, pp. 2883–2889, 2009. doi: 10.1016/j.automatica.2009.09.013
|
[23] |
H. Wen, X. Yue, L. Peng, and J. Yuan, “Fast spacecraft adaptive attitude tracking control through immersion and invariance design,” Acta Astronautica, vol. 139, pp. 77–84, 2017. doi: 10.1016/j.actaastro.2017.06.024
|
[24] |
K. W. Lee and S. Singh, “Noncertainty-equivalence adaptive attitude control of satellite orbiting around an asteroid,” Acta Astronautica, vol. 161, pp. 24–39, 2019. doi: 10.1016/j.actaastro.2019.05.008
|
[25] |
K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009. doi: 10.1016/j.automatica.2008.11.017
|
[26] |
B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, “Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function,” IEEE Trans. Neural Networks, vol. 21, no. 8, pp. 1339–1345, 2010. doi: 10.1109/TNN.2010.2047115
|
[27] |
D. Li, C. Chen, Y. Liu, and S. Tong, “Neural network controller design for a class of nonlinear delayed systems with time-varying fullstate constraints,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 9, pp. 2625–2636, 2019. doi: 10.1109/TNNLS.2018.2886023
|
[28] |
L. Sun, W. Huo, and Z. Jiao, “Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint,” IEEE Trans. Industrial Electronics, vol. 64, no. 1, pp. 480–492, 2017. doi: 10.1109/TIE.2016.2609399
|
[29] |
L. Sun, “Saturated adaptive output-constrained control of cooperative spacecraft rendezvous and docking,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1462–1470, 2019.
|
[30] |
C. Liu, G. Vukovich, Z. Sun, and K. Shi, “Observer-based fault-tolerant attitude control for spacecraft with input delay,” Journal of Guidance Control and Dynamics, vol. 41, pp. 2041–2053, 2018. doi: 10.2514/1.G003555
|
[31] |
A. Bounemeur, M. Chemachema, and N. Essounbouli, “Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures,” ISA Transactions, vol. 79, pp. 45–61, 2018. doi: 10.1016/j.isatra.2018.04.014
|
[32] |
A. Bounemeur, M. Chemachema, A. Zahaf, and S. Bououden, “Adaptive fuzzy fault-tolerant control using nussbaum gain for a class of SISO nonlinear systems with unknown directions,” in Proc. 4th Int. Conf. Electrical Engineering and Control Applications, 2019.
|
[33] |
H. Yang and H. Wang, “Robust adaptive fault-tolerant control for uncertain nonlinear system with unmodeled dynamics based on fuzzy approximation,” Neurocomputing, vol. 173, pp. 1660–1670, 2016. doi: 10.1016/j.neucom.2015.09.039
|
[34] |
Q. Hu, Y. Shi, and X. Shao, “Adaptive fault-tolerant attitude control for satellite reorientation under input saturation,” Aerospace Science and Technology, vol. 78, pp. 171–182, 2018. doi: 10.1016/j.ast.2018.04.015
|
[35] |
Y. Ou, H. Zhang, and B. Li, “Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft,” Astrophysics and Space Science, vol. 363, no. 4, pp. 1–13, 2018.
|
[36] |
T. Chen and S. Xu, “Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous,” Acta Astronautica, vol. 67, no. 1–2, pp. 122–134, 2010. doi: 10.1016/j.actaastro.2009.12.010
|
[37] |
K. Shi, C. Liu, and Z. Sun, “Constrained fuel-free control for spacecraft electromagnetic docking in elliptical orbits,” Acta Astronautica, vol. 162, pp. 14–24, 2019. doi: 10.1016/j.actaastro.2019.05.016
|
[38] |
J. Nestruev, A. Bocharov, and S. Duzhin, Smooth Manifolds and Observables. Springer, 2003.
|