IEEE/CAA Journal of Automatica Sinica
Citation: | P. Ignaciuk, "Distributed Order-Up-To Inventory Control in Networked Supply Systems With Delay," IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1709-1714, Oct. 2021. doi: 10.1109/JAS.2021.1004147 |
[1] |
G. Xiong, X. S. Dong, H. Lu, and D. Y. Shen, “Research progress of parallel control and management,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 355–367, Mar. 2020. doi: 10.1109/JAS.2019.1911792
|
[2] |
X.-M. Zhang, Q.-L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020. doi: 10.1109/JAS.2019.1911861
|
[3] |
P. Ignaciuk and Ł. Wieczorek, “Networked base-stock inventory control in complex distribution systems,” Math. Probl. Eng., vol. 2019, pp. 1–14, 2019.
|
[4] |
X. J. Zheng, M. X. Yin, and Y. X. Zhang, “Integrated optimization of location, inventory and routing in supply chain network design,” Transport Res. B, vol. 121, pp. 1–20, 2019. doi: 10.1016/j.trb.2019.01.003
|
[5] |
Y. He, S. Y. Li, and Y. Zheng, “Distributed state estimation for leak detection in water supply networks,” IEEE/CAA J. Autom. Sinica, pp. 1–9, 2017. DOI: 10.1109/JAS.2017.7510367.
|
[6] |
M. V. Basin, F. Guerra-Avellaneda, and Y. B. Shtessel, “Stock management problem: Adaptive fixed-time convergent continuous controller design,” IEEE Trans. Syst. Man Cy.-S, vol. 50, no. 12, pp. 4974–4983, 2019. doi: 10.1109/TSMC.2019.2930563
|
[7] |
R. Abbou, J. J. Loiseau, and Ch. Moussaoui, “Robust inventory control of production systems subject to uncertainties on demand and lead times,” Int. J. Prod. Res., vol. 55, no. 8, pp. 2177–2196, 2017. doi: 10.1080/00207543.2016.1214295
|
[8] |
P. Ignaciuk, “Discrete-time control of production-inventory systems with deteriorating stock and unreliable supplies,” IEEE Trans. Syst. Man Cy.-S., vol. 45, no. 2, pp. 338–348, Feb. 2015. doi: 10.1109/TSMC.2014.2347012
|
[9] |
J. B. Sheu and T. Kundu, “Forecasting time-varying logistics distribution flows in the one belt-one road strategic context,” Transport Res. E, vol. 117, pp. 5–22, 2018. doi: 10.1016/j.tre.2017.03.003
|
[10] |
P. Leśniewski and A. Bartoszewicz, “Optimal model reference sliding mode control of perishable inventory systems,” IEEE Trans. Autom. Sci. Eng, vol. 17, no. 3, pp. 1647–1656, 2020. doi: 10.1109/TASE.2020.2969493
|
[11] |
S. Axsäter, Inventory Control, 3E. Berlin Heidelberg: Springer, 2015.
|
[12] |
H. Sarimveis, P. Patrinos, C. D. Tarantilis, and C. T. Kiranoudis, “Dynamic modeling and control of supply chain systems: A review,” Comp. Oper. Res., vol. 35, no. 11, pp. 3530–3561, 2008. doi: 10.1016/j.cor.2007.01.017
|
[13] |
K. Hoberg, J. R. Bradley, and U. W. Thonemann, “Analyzing the effect of the inventory policy on order and inventory variability with linear control theory,” Eur. J. Oper. Res., vol. 176, no. 3, pp. 1620–1642, 2007. doi: 10.1016/j.ejor.2005.10.040
|
[14] |
P. Ignaciuk, “Discrete inventory control in systems with perishable goods – a time-delay system perspective,” IET Control Theory Appl., vol. 8, no. 1, pp. 11–21, 2014. doi: 10.1049/iet-cta.2013.0636
|
[15] |
K. Hoberg and U. W. Thonemann, “Analyzing variability, cost, and responsiveness of base-stock inventory policies with linear control theory,” IIE Trans., vol. 47, no. 8, pp. 865–879, 2015.
|
[16] |
M. M. Naim, V. L. Spiegler, J. Wikner, and D. R. Towill, “Identifying the causes of the bullwhip effect by exploiting control block diagram manipulation with analogical reasoning,” Eur. J. Oper. Res., vol. 263, pp. 240–246, 2017. doi: 10.1016/j.ejor.2017.05.014
|
[17] |
M. Boccadoro, F. Martinelli, and P. Valigi, “Supply chain management by H-infinity control,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 4, pp. 703–707, Oct. 2008. doi: 10.1109/TASE.2008.917152
|
[18] |
D. F. Fu, C. M. Ionescu, El-H. Aghezzaf, and R. De Keyser, “A constrained EPSAC approach to inventory control for a benchmark supply chain system,” Int. J. Prod. Res., vol. 54, no. 1, pp. 232–250, 2016. doi: 10.1080/00207543.2015.1070214
|
[19] |
P. Ignaciuk, “Dead-time compensation in continuous-review perishable inventory systems with multiple supply alternatives,” J. Proc. Contr., vol. 22, no. 5, pp. 915–924, 2012. doi: 10.1016/j.jprocont.2012.03.006
|
[20] |
R. Dominguez, S. Cannella, and J. M. Framinan, “The impact of the supply chain structure on bullwhip effect,” Appl. Math. Model., vol. 39, no. 23–24, pp. 7309–7325, 7309.
|
[21] |
S. M. Zahraei and Ch.-Ch. Teo, “Optimizing a supply network with production smoothing, freight expediting and safety stocks: An analysis of tactical trade-offs,” Eur. J. Oper. Res., vol. 262, pp. 75–88, 2017. doi: 10.1016/j.ejor.2017.02.045
|
[22] |
Y. S. Wei and S. Y. Li, “Water supply networks as cyber-physical systems and controllability analysis,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 313–319, Jul. 2015. doi: 10.1109/JAS.2015.7152666
|
[23] |
C. Grob, Inventory Management in Multi-Echelon Networks. On the Optimization of Reorder Points. Wiesbaden: Springer, 2019.
|
[24] |
K. D. Cattani, F. R. Jacobs, and J. Schoenfelder, “Common inventory modeling assumptions that fall short: Arborescent networks, poisson demand, and single-echelon approximations,” J. Oper. Manag., vol. 29, no. 5, pp. 488–499, 2011. doi: 10.1016/j.jom.2010.11.008
|
[25] |
G. Van der Heide, P. Buijs, K. J. Roodbergen, and I. F. A. Vis, “Dynamic shipments of inventories in shared warehouse and transportation networks,” Transport Res. E, vol. 118, pp. 240–257, 2018. doi: 10.1016/j.tre.2018.07.012
|
[26] |
P. Ignaciuk, “Nonlinear inventory control with discrete sliding modes in systems with uncertain delay,” IEEE Trans. Ind. Inf., vol. 10, no. 1, pp. 559–568, Feb. 2014. doi: 10.1109/TII.2013.2278476
|
[27] |
X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, and Y. He, “Overview of recent advances in stability of linear systems with time-varying delays,” IET Control Theory Appl., vol. 13, no. 1, pp. 1–16, 2019. doi: 10.1049/iet-cta.2018.5188
|
[28] |
X.-M. Zhang, Q.-L. Han, and X. H. Ge, “Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 77–85, Jan. 2021.
|