A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 9
Sep.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
M. S. Sarafraz, M. S. Tavazoei, "A Unified Optimization-Based Framework to Adjust Consensus Convergence Rate and Optimize the Network Topology in Uncertain Multi-Agent Systems," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1539-1548, Sep. 2021. doi: 10.1109/JAS.2021.1004111
Citation: M. S. Sarafraz, M. S. Tavazoei, "A Unified Optimization-Based Framework to Adjust Consensus Convergence Rate and Optimize the Network Topology in Uncertain Multi-Agent Systems," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1539-1548, Sep. 2021. doi: 10.1109/JAS.2021.1004111

A Unified Optimization-Based Framework to Adjust Consensus Convergence Rate and Optimize the Network Topology in Uncertain Multi-Agent Systems

doi: 10.1109/JAS.2021.1004111
More Information
  • This paper deals with the consensus problem in an uncertain multi-agent system whose agents communicate with each other through a weighted undirected (primary) graph. The considered multi-agent system is described by an uncertain state-space model in which the involved matrices belong to some matrix boxes. As the main contribution of the paper, a unified optimization-based framework is proposed for simultaneously reducing the weights of the edges of the primary communication graph (optimizing the network topology) and synthesizing a controller such that the consensus in the considered uncertain multi-agent system is ensured with an adjustable convergence rate. Considering the NP-hardness nature of the optimization problem related to the aforementioned framework, this problem is relaxed such that it can be solved by regular LMI solvers. Numerical/practical-based examples are presented to verify the usefulness of the obtained results.

     

  • loading
  • 1 Formally speaking, there is a bilinear term in the constraint of the optimization (18) which can cause non-convexity. However, since the only source of non-convexity is the scalar variable $ \beta $, a straightforward approach is to adjust this variable through a grid-search or some other efficient methods like as that proposed in [52].
    2 http://www.complib.de/
  • [1]
    J. H. Qin, Q. C. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent systems: A brief survey,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4972–4983, Jun. 2016.
    [2]
    R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Trans. Automat. Contr., vol. 51, no. 3, pp. 401–420, Mar. 2006. doi: 10.1109/TAC.2005.864190
    [3]
    H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching networks,” IEEE Trans. Automat. Contr., vol. 52, no. 5, pp. 863–868, May 2007. doi: 10.1109/TAC.2007.895948
    [4]
    Q. Wang, Y. Z. Wang, and H. X. Zhang, “The formation control of multi-agent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, Jan. 2016.
    [5]
    A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control using dynamic event-triggering mechanism for multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sept. 2020.
    [6]
    U. A. Khan and J. M. F. Moura, “Distributing the Kalman filter for large-scale systems,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4919–4935, Oct. 2008. doi: 10.1109/TSP.2008.927480
    [7]
    L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” in Proc. 4th Int. Symp. Information Processing in Sensor Networks, Boise, ID, USA, 2005, pp. 63–70.
    [8]
    F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex oscillator networks and smart grids,” Proc. Natl. Acad. Sci. USA, vol. 110, no. 6, pp. 2005–2010, Jan. 2013. doi: 10.1073/pnas.1212134110
    [9]
    W. H. Liu, F. Q. Deng, J. R. Liang, and H. J. Liu, “Distributed average consensus in multi-agent networks with limited bandwidth and time-delays,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 193–203, Apr. 2014. doi: 10.1109/JAS.2014.7004550
    [10]
    D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501–1511, Apr. 2019. doi: 10.1109/TCYB.2018.2806387
    [11]
    S. Chattopadhyay, H. Y. Dai, and D. Y. Eun, “Maximization of robustness of interdependent networks under budget constraints,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1441–1452, Jul.–Sept. 2019. doi: 10.1109/TNSE.2019.2935068
    [12]
    Y. M. Wu and X. X. He, “Secure consensus control for multiagent systems with attacks and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 136–142, Jan. 2017. doi: 10.1109/JAS.2016.7510010
    [13]
    D. Mukherjee and D. Zelazo, “Robustness of consensus over weighted digraphs,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 4, pp. 657–670, Oct.–Dec. 2018.
    [14]
    Y. W. Hong and A. Scaglione, “Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks,” IEEE Trans. Wirel. Commun., vol. 5, no. 10, pp. 2844–2855, Oct. 2006. doi: 10.1109/TWC.2006.04608
    [15]
    I. C. Paschalidis and B. B. Li, “Energy optimized topologies for distributed averaging in wireless sensor networks,” IEEE Trans. Automat. Contr., vol. 56, no. 10, pp. 2290–2304, Oct. 2011. doi: 10.1109/TAC.2011.2163875
    [16]
    C. Pandana and K. J. R. Liu, “Robust connectivity-aware energy-efficient routing for wireless sensor networks,” IEEE Trans. Wirel. Commun., vol. 7, no. 10, pp. 3904–3916, Oct. 2008. doi: 10.1109/T-WC.2008.070453
    [17]
    A. Shariati and Q. Zhao, “Robust leader-following output regulation of uncertain multi-agent systems with time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 807–817, Jul. 2018. doi: 10.1109/JAS.2018.7511141
    [18]
    C. M. Agulhari, R. C. L. F. Oliveira, and P. L. D. Peres, “LMI relaxations for reduced-order robust H control of continuous-time uncertain linear systems,” IEEE Trans. Automat. Contr., vol. 57, no. 6, pp. 1532–1537, Jun. 2011.
    [19]
    M. A. Pai, C. D. Vournas, A. N. Michel, and H. Ye, “Applications of interval matrices in power system stabilizer design,” Int. J. Electr. Power Energy Syst., vol. 19, no. 3, pp. 179–184, Mar. 1997. doi: 10.1016/S0142-0615(96)00041-5
    [20]
    M. C. Pulcherio, M. S. Illindala, and R. K. Yedavalli, “Robust stability region of a microgrid under parametric uncertainty using bialternate sum matrix approach,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5553–5562, Sept. 2018. doi: 10.1109/TPWRS.2018.2815980
    [21]
    T. Alamo, R. Tempo, D. R. Ramírez, and E. F. Camacho, “A new vertex result for robustness problems with interval matrix uncertainty,” Syst. Control Lett., vol. 57, no. 6, pp. 474–481, Jun. 2008. doi: 10.1016/j.sysconle.2007.11.003
    [22]
    W. J. Xiong, T. Hayat, and J. D. Cao, “Interval stability of time-varying two-dimensional hierarchical discrete-time multi-agent systems,” IET Control Theory Appl., vol. 9, no. 1, pp. 114–119, Jan. 2015. doi: 10.1049/iet-cta.2014.0893
    [23]
    S. X. Guo, “An efficient methodology for robust control of dynamic systems with interval matrix uncertainties,” Int. J. Syst. Sci., vol. 49, no. 7, pp. 1491–1506, Apr. 2018. doi: 10.1080/00207721.2018.1457731
    [24]
    Z. H. Xu, H. J. Ni, H. Reza Karimi, and D. Zhang, “A Markovian jump system approach to consensus of heterogeneous multiagent systems with partially unknown and uncertain attack strategies,” Int. J. Robust Nonlinear Control, vol. 30, no. 7, pp. 3039–3053, May 2020. doi: 10.1002/rnc.4923
    [25]
    D. Zhang, Z. H. Xu, G. Feng, and H. Y. Li, “Asynchronous resilient output consensus of switched heterogeneous linear multivehicle systems with communication delay,” IEEE/ASME Trans. Mech., vol. 24, no. 6, pp. 2627–2640, Dec. 2019. doi: 10.1109/TMECH.2019.2932322
    [26]
    C. P. Bechlioulis, M. A. Demetriou, and K. J. Kyriakopoulos, “A distributed control and parameter estimation protocol with prescribed performance for homogeneous lagrangian multi-agent systems,” Auton Robots, vol. 42, no. 8, pp. 1525–1541, Dec. 2018. doi: 10.1007/s10514-018-9700-2
    [27]
    X. W. Li, Y. C. Soh, and L. H. Xie, “Output-feedback protocols without controller interaction for consensus of homogeneous multi-agent systems: A unified robust control view,” Automatica, vol. 81, pp. 37–45, Jul. 2017. doi: 10.1016/j.automatica.2017.03.001
    [28]
    S. E. Li, X. H. Qin, K. Q. Li, J. Q. Wang, and B. Y. Xie, “Robustness analysis and controller synthesis of homogeneous vehicular platoons with bounded parameter uncertainty,” IEEE/ASME Trans. Mech., vol. 22, no. 2, pp. 1014–1025, Apr. 2017. doi: 10.1109/TMECH.2017.2647987
    [29]
    S. Boyd, “Convex optimization of graph laplacian eigenvalues,” in Proc. Int. Congr. Math., vol. 3, no. 1–3, pp. 1311–1319, Aug. 2006.
    [30]
    M. Rafiee and A. M. Bayen, “Optimal network topology design in multi-agent systems for efficient average consensus,” in Proc. 49th IEEE Conf. Decision and Control, Atlanta, GA, USA, 2010, pp. 3877–3883.
    [31]
    K. Ogiwara, T. Fukami, and N. Takahashi, “Maximizing algebraic connectivity in the space of graphs with a fixed number of vertices and edges,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 359–368, Jun. 2015.
    [32]
    A. Gusrialdi, Z. H. Qu, and S. Hirche, “Distributed link removal using local estimation of network topology,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 3, pp. 280–292, Jul.–Sept. 2019. doi: 10.1109/TNSE.2018.2813426
    [33]
    P. Mukherjee, M. Santilli, A. Gasparri, and R. K. Williams, “Optimal topology selection for stable coordination of asymmetrically interacting multi-robot systems,” in Proc. IEEE Int. Conf. Robotics and Automation, Paris, France, 2020, pp. 6668–6674.
    [34]
    L. Kempton, G. Herrmann, and M. di Bernardo, “Adaptive weight selection for optimal consensus performance,” in Proc. IEEE Conf. Decision and Control, Los Angeles, CA, USA, 2014, pp. 2234–2239.
    [35]
    J. Liu and T. Başar, “Toward optimal network topology design for fast and secure distributed computation,” in Proc. 5th Int. Conf. Decision and Game Theory for Security, Los Angeles, CA, USA, 2014, pp. 234–245.
    [36]
    D. Groß and O. Stursberg, “Optimized distributed control and network topology design for interconnected systems,” in Proc. 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, FL, USA, 2011, pp. 8112–8117.
    [37]
    M. Jilg and O. Stursberg, “Optimized distributed control and topology design for hierarchically interconnected systems,” in Proc. European Control Conf., Zurich, Switzerland, 2013, pp. 4340–4346.
    [38]
    H. L. Trentelman, K. Takaba, and N. Monshizadeh, “Robust synchronization of uncertain linear multi-agent systems,” IEEE Trans. Automat. Contr., vol. 58, no. 6, pp. 1511–1523, Jun. 2013. doi: 10.1109/TAC.2013.2239011
    [39]
    X. W. Li, Y. C. Soh, and L. H. Xie, “Robust consensus of uncertain linear multi-agent systems via dynamic output feedback,” Automatica, vol. 98, pp. 114–123, Dec. 2018. doi: 10.1016/j.automatica.2018.09.020
    [40]
    S. Z. Khong, E. Lovisari, and A. Rantzer, “A unifying framework for robust synchronization of heterogeneous networks via integral quadratic constraints,” IEEE Trans. Automat. Contr., vol. 61, no. 5, pp. 1297–1309, May 2016. doi: 10.1109/TAC.2016.2545118
    [41]
    R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Optimal synchronization for networks of noisy double integrators,” IEEE Trans. Automat. Contr., vol. 56, no. 5, pp. 1146–1152, May 2011. doi: 10.1109/TAC.2011.2107051
    [42]
    H. Kim, H. Shim, and J. H. Seo, “Output consensus of heterogeneous uncertain linear multi-agent systems,” IEEE Trans. Automat. Contr., vol. 56, no. 1, pp. 200–206, Jan. 2011. doi: 10.1109/TAC.2010.2088710
    [43]
    J. Y. Wang, Z. S. Duan, G. H. Wen, and G. R. Chen, “Distributed robust control of uncertain linear multi-agent systems,” Int. J. Robust Nonlinear Control, vol. 25, no. 13, pp. 2162–2179, Jun. 2015. doi: 10.1002/rnc.3199
    [44]
    Z. K. Li, Z. S. Duan, L. H. Xie, and X. D. Liu, “Distributed robust control of linear multi-agent systems with parameter uncertainties,” Int. J. Control, vol. 85, no. 8, pp. 1039–1050, Aug. 2012. doi: 10.1080/00207179.2012.674644
    [45]
    W. C. Huang, J. P. Zeng, and H. F. Sun, “Robust consensus for linear multi-agent systems with mixed uncertainties,” Syst. Control Lett., vol. 76, pp. 56–65, Feb. 2015. doi: 10.1016/j.sysconle.2014.12.005
    [46]
    T. S. Hu, Z. L. Lin, and Y. Shamash, “On maximizing the convergence rate for linear systems with input saturation,” IEEE Trans. Automat. Contr., vol. 48, no. 7, pp. 1249–1253, Jul. 2003. doi: 10.1109/TAC.2003.814271
    [47]
    C. Q. Ma and J. F. Zhang, “Necessary and sufficient conditions for consensusability of linear multi-agent systems,” IEEE Trans. Automat. Contr., vol. 55, no. 5, pp. 1263–1268, May 2010. doi: 10.1109/TAC.2010.2042764
    [48]
    A. Nemirovskii, “Several NP-hard problems arising in robust stability analysis,” Math. Control,Signals Syst., vol. 6, no. 2, pp. 99–105, Jun. 1993. doi: 10.1007/BF01211741
    [49]
    A. A. Ahmadi and G. Hall, “On the complexity of detecting convexity over a box,” Math. Progr., vol. 182, no. 1–2, pp. 429–443, Jul. 2020. doi: 10.1007/s10107-019-01396-x
    [50]
    A. Ben-Tal and A. Nemirovski, “On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty,” SIAM J. Optim., vol. 12, no. 3, pp. 811–833, 2002. doi: 10.1137/S1052623400374756
    [51]
    A. Ben-Tal, A. Nemirovski, and C. Roos, “Extended matrix cube theorems with applications to μ-theory in control,” Math. Oper. Res., vol. 28, no. 3, pp. 497–523, Aug. 2003. doi: 10.1287/moor.28.3.497.16392
    [52]
    D. Lee and J. H. Hu, “Sequential parametric convex approximation algorithm for bilinear matrix inequality problem,” Optim. Lett., vol. 13, no. 4, pp. 741–759, Jun. 2019. doi: 10.1007/s11590-018-1274-6
    [53]
    H. Zhang, J. Q. Wei, P. Yi, and X. M. Hu, “Projected primal-dual gradient flow of augmented lagrangian with application to distributed maximization of the algebraic connectivity of a network,” Automatica, vol. 98, pp. 34–41, Dec. 2018. doi: 10.1016/j.automatica.2018.09.004
    [54]
    D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, Feb. 2021. doi: 10.1109/JAS.2021.1003820

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (937) PDF downloads(72) Cited by()

    Highlights

    • A unified optimization-based framework is introduced for simultaneously optimizing the network topology and synthesizing a controller such that the consensus in an uncertain multi-agent system ensured.
    • It us assumed that the considered multi-agent system is described by an uncertain state- space model in which the involved matrices belong to some matrix boxes.
    • A relaxation proposed such that the introduced optimization program can be solved using regular LMI solvers.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return