IEEE/CAA Journal of Automatica Sinica
Citation: | Q. L. Wang, C. Y. Sun, "Distributed Asymptotic Consensus in Directed Networks of Nonaffine Systems With Nonvanishing Disturbance," IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1133-1140, Jun. 2021. doi: 10.1109/JAS.2021.1004021 |
[1] |
G. Wen, Z. Duan, G. Chen, and W. Yu, “Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies,” IEEE Trans. Circuits and Systems (I), vol. 61, no. 2, pp. 499–511, 2014.
|
[2] |
W. Yu, G. Chen, and M. Cao, “Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems,” Automatica, vol. 46, no. 6, pp. 1089–1095, 2010. doi: 10.1016/j.automatica.2010.03.006
|
[3] |
Z. Li, L. Gao, W. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, 2019.
|
[4] |
C. Zhang, L. Chang, and X. Zhang, “Leader-follower consensus of upper-triangular nonlinear multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 210–217, 2014. doi: 10.1109/JAS.2014.7004552
|
[5] |
Y. Chen, R. Yu, Y. Zhang, and C. Liu, “Circular formation flight control for unmanned aerial vehicles with directed network and external disturbance,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 505–516, 2019.
|
[6] |
C. Wang and H. Ji, “Robust consensus tracking for a class of heterogeneous second-order nonlinear multi-agent systems,” Int. J. Robust and Nonlinear Control, vol. 25, no. 17, pp. 3367–3383, 2015. doi: 10.1002/rnc.3269
|
[7] |
L. Chen and Q. Wang, “Adaptive robust control for a class of uncertain mimo non-affine nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 105–112, 2016. doi: 10.1109/JAS.2016.7373768
|
[8] |
C. Wang, X. Wang, and H. Ji, “A continuous leader-following consensus control strategy for a class of uncertain multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 187–192, 2014. doi: 10.1109/JAS.2014.7004549
|
[9] |
Q. Wang, C. Sun, and X. Xin, “Robust consensus tracking of linear multiagent systems with input saturation and input-additive uncertainties,” Int. J. Robust and Nonlinear Control, vol. 27, no. 14, pp. 2393–2409, 2016.
|
[10] |
W. Liu and J. Huang, “Adaptive leader-following consensus for a class of higher-order nonlinear multi-agent systems with directed switching networks,” Automatica, vol. 79, pp. 84–92, 2017. doi: 10.1016/j.automatica.2017.02.010
|
[11] |
C. Hua, X. You, and X. Guan, “Leader-following consensus for a class of high-order nonlinear multi-agent systems,” Automatica, vol. 73, pp. 138–144, 2016. doi: 10.1016/j.automatica.2016.06.025
|
[12] |
N. Zerari, M. Chemachema, and N. Essounbouli, “Neural network based adaptive tracking control for a class of pure feedback nonlinear systems with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 278–290, 2018.
|
[13] |
H. Lin, B. Zhao, D. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, 2020. doi: 10.1109/JAS.2020.1003225
|
[14] |
Y. Yang and D. Yue, “Distributed tracking control of a class of multi-agent systems in non-affine pure-feedback form under a directed topology,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 169–180, 2018. doi: 10.1109/JAS.2017.7510382
|
[15] |
Y. Wang, Y. Song, and H. David, “Zero-error consensus tracking with preassignable convergence for nonaffine multiagent systems,” IEEE Trans. on Cybernetics, vol. 15, no. 3, pp. 1300–1310, 2021. doi: 10.1109/TCYB.2019.2893461
|
[16] |
B. Fan, Q. Yang, S. Jagannathan, and Y. Sun, “Output-constrained control of nonaffine multiagent systems with partially unknown control directions,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3936–3942, 2019. doi: 10.1109/TAC.2019.2892391
|
[17] |
S. Reza and W. Wang, “Distributed adaptive FBC of uncertain nonaffine multiagent systems preceded by unknown input nonlinearities with unknown gain sign,” IEEE Trans. Systems,Man and Cybernetics:Systems, vol. 50, no. 8, pp. 3036–3046, 2020.
|
[18] |
M. Chen and S. Ge, “Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer,” IEEE Trans. Cybernetics, vol. 43, no. 4, pp. 1213–1225, 2013. doi: 10.1109/TSMCB.2012.2226577
|
[19] |
B. Ren, Q. Zhong, and J. Chen, “Robust control for a class of nonaffine nonlinear systems based on the uncertainty and disturbance estimator,” IEEE Trans. Industrial Informatics, vol. 62, no. 9, pp. 5881–5888, 2015. doi: 10.1109/TIE.2015.2421884
|
[20] |
M. Jang, C. Chen, and Y. Tsao, “Sliding mode control for active magnetic bearing system with flexible rotor,” Journal of the Franklin Institute, vol. 342, no. 4, pp. 401–419, 2005. doi: 10.1016/j.jfranklin.2005.01.006
|
[21] |
Q. Shen, P. Shi, and Y. Shi, “Distributed adaptive fuzzy control for nonlinear multiagent systems via sliding mode observers,” IEEE Trans. Cybernetics, vol. 46, no. 12, pp. 3086–3097, 2016. doi: 10.1109/TCYB.2015.2496963
|
[22] |
Y. Li, G. Yang, and S. Tong, “Fuzzy adaptive distributed event-triggered consensus control of uncertain nonlinear multiagent systems,” IEEE Trans. Systems,Man and Cybernetics:Systems, vol. 49, no. 9, pp. 1777–1786, 2019. doi: 10.1109/TSMC.2018.2812216
|
[23] |
Q. Xu, “Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control,” IEEE Trans. Autom. Science and Engineering, vol. 14, no. 1, pp. 238–248, 2016.
|
[24] |
A. Levant, “Higher-order sliding modes, differentiation and outputfeedback control,” Int. J. Control, vol. 76, no. 9–10, pp. 924–941, 2003. doi: 10.1080/0020717031000099029
|
[25] |
P. Tiwari, S. Janardhanan, and M. Un Nabi, “Rigid spacecraft attitude control using adaptive integral second order sliding mode,” Aerospace Science and Technology, vol. 42, pp. 50–57, 2015. doi: 10.1016/j.ast.2014.11.017
|
[26] |
S. Ali, R. Samar, M. Shah, A. Bhatti, and K. Munawar, “Higher-order sliding mode based lateral guidance for unmanned aerial vehicles,” Transactions of the Institute of Mesasurement and Control, vol. 39, no. 5, pp. 715–727, 2017. doi: 10.1177/0142331215619972
|
[27] |
B. Xian and Y. Zhang, “Continuous asymptotically tracking control for a class of nonaffine-in-input system with non-vanishing disturbance,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 6019–6025, 2017. doi: 10.1109/TAC.2017.2704025
|
[28] |
Q. Wang, H. Psillakis, and C. Sun, “Adaptive cooperative control with guaranteed convergence in time-varying networks of nonlinear dynamical systems,” IEEE Trans. Cybernetics, vol. 50, no. 12, pp. 5035–5046, 2020. doi: 10.1109/TCYB.2019.2916563
|
[29] |
R. Nussbaum, “Some remarks on a conjecture in parameter adaptive control,” Systems &Control Letters, vol. 3, no. 5, pp. 243–246, 1983.
|
[30] |
G. Shi and K. Johansson, “Robust consensus for continuous-time multiagent dynamics,” SIAM J. Control Optim., vol. 51, no. 5, pp. 3673–3691, 2013. doi: 10.1137/110841308
|
[31] |
A. Filippov, Differential Equations With Discontinuous Righthand Sides: Control Systems, Netherlands: Springer Science & Business Media, 2013.
|
[32] |
N. Fischer, R. Kamalapurkar, and W. Dixon, “Lasalle-Yoshizawa corollaries for nonsmooth systems,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2333–2338, 2013. doi: 10.1109/TAC.2013.2246900
|
[33] |
Q. Wang, H. Psillakis, C. Sun, and F. Lewis, “Adaptive NN distributed control for time-varying networks of nonlinear agents with antagonistic interactions,” IEEE Trans. Neural Networks and Learning Systems, to be pulished, 2020.
|