IEEE/CAA Journal of Automatica Sinica
Citation: | C. C. Leng, H. Zhang, G. R. Cai, Z. Chen, and A. Basu, "Total Variation Constrained Non-Negative Matrix Factorization for Medical Image Registration," IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1025-1037, May. 2021. doi: 10.1109/JAS.2021.1003979 |
[1] |
D. D. Yu, F. Yang, C. Y. Yang, C. C. Leng, J. Cao, Y. N. Wang, and J. Tian, “Fast rotation-free feature-based image registration using improved N-SIFT and GMM-based parallel optimization,” IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1653–1664, Aug. 2016. doi: 10.1109/TBME.2015.2465855
|
[2] |
A. A. Goshtasby, 2D and 3D Image Registration: For Medical, Remote Sensing, and Industrial Applications. Hoboken, USA: John Wiley & Sons, Inc., 2005.
|
[3] |
A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration: A survey,” IEEE Trans. Med. Imaging, vol. 32, no. 7, pp. 1153–1190, Jul. 2013. doi: 10.1109/TMI.2013.2265603
|
[4] |
C. C. Leng, J. J. Xiao, M. Li, and H. P. Zhang, “Robust adaptive principal component analysis based on intergraph matrix for medical image registration,” Comput. Intell. Neurosci., vol. 2015, Article No. 829528, Apr. 2015.
|
[5] |
M. G. Gong, S. M. Zhao, L. C. Jiao, D. Y. Tian, and S. Wang, “A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4328–4338, Jul. 2014. doi: 10.1109/TGRS.2013.2281391
|
[6] |
J. Woo, M. Stone, and J. L. Prince, “Multimodal registration via mutual information incorporating geometric and spatial context,” IEEE Trans. Image Process., vol. 24, no. 2, pp. 757–769, Feb. 2015. doi: 10.1109/TIP.2014.2387019
|
[7] |
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. doi: 10.1023/B:VISI.0000029664.99615.94
|
[8] |
B. Rister, M. A. Horowitz, and D. L. Rubin, “Volumetric image registration from invariant keypoints,” IEEE Trans. Image Process., vol. 26, no. 10, pp. 4900–4910, Oct. 2017. doi: 10.1109/TIP.2017.2722689
|
[9] |
F. R. K. Chung, Spectral Graph Theory. Providence, USA: American Mathematical Society, 1997.
|
[10] |
A. K. Bhandari, A. Ghosh, and I. V. Kumar, “A local contrast fusion based 3D Otsu algorithm for multilevel image segmentation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 200–213, Jan. 2020. doi: 10.1109/JAS.2019.1911843
|
[11] |
L. He, N. Ray, Y. S. Guan, and H. Zhang, “Fast large-scale spectral clustering via explicit feature mapping,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 1058–1071, Mar. 2019. doi: 10.1109/TCYB.2018.2794998
|
[12] |
C. C. Leng, W. Xu, I. Cheng, and A. Basu, “Graph matching based on stochastic perturbation,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 4862–4875, Dec. 2015. doi: 10.1109/TIP.2015.2469153
|
[13] |
J. Tang, L. Shao, X. L. Li, and K. Lu, “A local structural descriptor for image matching via normalized graph Laplacian embedding,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 410–420, Feb. 2016. doi: 10.1109/TCYB.2015.2402751
|
[14] |
X. Yang and Z. Y. Liu, “Adaptive graph matching,” IEEE Trans. Cybern., vol. 48, no. 5, pp. 1432–1445, May 2018. doi: 10.1109/TCYB.2017.2697968
|
[15] |
J. C. Yan, C. S. Li, Y. Li, and G. T. Cao, “Adaptive discrete hypergraph matching,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 765–779, Feb. 2018. doi: 10.1109/TCYB.2017.2655538
|
[16] |
J. Y. Ma, J. Zhao, J. W. Tian, A. L. Yuille, and Z. W. Tu, “Robust point matching via vector field consensus,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1706–1721, Apr. 2014. doi: 10.1109/TIP.2014.2307478
|
[17] |
J. Chen, J. Y. Ma, C. C. Yang, L. Ma, and S. Zheng, “Non-rigid point set registration via coherent spatial mapping,” Signal Process., vol. 106, pp. 62–72, Jan. 2015. doi: 10.1016/j.sigpro.2014.07.004
|
[18] |
J. Y. Ma, J. Zhao, and A. L. Yuille, “Non-rigid point set registration by preserving global and local structures,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 53–64, Jan. 2016. doi: 10.1109/TIP.2015.2467217
|
[19] |
J. Y. Ma, J. J. Jiang, H. B. Zhou, J. Zhao, and X. J. Guo, “Guided locality preserving feature matching for remote sensing image registration,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4435–4447, Aug. 2018. doi: 10.1109/TGRS.2018.2820040
|
[20] |
J. Y. Ma, J. Zhao, J. J. Jiang, H. B. Zhou, and X. J. Guo, “Locality preserving matching,” Int. J. Comput. Vision, vol. 127, no. 5, pp. 512–531, May. 2019. doi: 10.1007/s11263-018-1117-z
|
[21] |
H. C. Chen, X. Zhang, S. Y. Du, Z. Z. Wu, and N. N. Zheng, “A correntropy-based affine iterative closest point algorithm for robust point set registration,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 981–991, Jul. 2019. doi: 10.1109/JAS.2019.1911579
|
[22] |
L. Xu and I. King, “A PCA approach for fast retrieval of structural patterns in attributed graphs,” IEEE Trans. Syst.,Man,Cybern.,Part B:Cybern., vol. 31, no. 5, pp. 812–817, Oct. 2001. doi: 10.1109/3477.956043
|
[23] |
T. Caelli and S. Kosinov, “An eigenspace projection clustering method for inexact graph matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 4, pp. 515–519, Apr. 2004. doi: 10.1109/TPAMI.2004.1265866
|
[24] |
M. Xu, H. Chen, and P. K. Varshney, “Dimensionality reduction for registration of high-dimensional data sets,” IEEE Trans. Image Process., vol. 22, no. 8, pp. 3041–3049, Aug. 2013. doi: 10.1109/TIP.2013.2253480
|
[25] |
C. C. Leng, H. Zhang, G. R. Cai, I. Cheng, and A. Basu, “Graph regularized Lp smooth non-negative matrix factorization for data representation,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 584–595, Mar. 2019. doi: 10.1109/JAS.2019.1911417
|
[26] |
J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, Dec. 2000. doi: 10.1126/science.290.5500.2319
|
[27] |
S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, Dec. 2000. doi: 10.1126/science.290.5500.2323
|
[28] |
M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” in Proc. 14th Int. Conf. Neural Information Processing Systems, Cambridge, USA, 2001, pp. 585–591.
|
[29] |
D. Cai, X. F. He, and J. W. Han, “Isometric projection,” in Proc. 22nd AAAI Conf. Artificial Intelligence, Vancouver, Canada, 2007, pp. 528–533.
|
[30] |
S. P. Liu, Y. T. Xian, H. F. Li, and Z. T. Yu, “Text detection in natural scene images using morphological component analysis and Laplacian dictionary,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 214–222, Jan. 2020.
|
[31] |
R. He, T. N. Tan, and L. Wang, “Robust recovery of corrupted low-rank matrix by implicit regularizers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 770–783, Apr. 2014. doi: 10.1109/TPAMI.2013.188
|
[32] |
D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999. doi: 10.1038/44565
|
[33] |
W. Xu, X. Liu, and Y. H. Gong, “Document clustering based on non-negative matrix factorization,” in Proc. 26th Annu. Int. ACM SIGIR Conf. Research and Development in Information Retrieval, Toronto, Canada, 2003, pp. 267–273.
|
[34] |
F. Shahnaz, M. W. Berry, V. Pauca, and R. J. Plemmons, “Document clustering using nonnegative matrix factorization,” Inf. Process. Manage., vol. 42, no. 2, pp. 373–386, 2006. doi: 10.1016/j.ipm.2004.11.005
|
[35] |
H. F. Liu, Z. H. Wu, X. L. Li, D. Cai, and T. S. Huang, “Constrained nonnegative matrix factorization for image representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1299–1311, Jul. 2012. doi: 10.1109/TPAMI.2011.217
|
[36] |
D. Wang, X. B. Gao, and X. M. Wang, “Semi-supervised nonnegative matrix factorization via constraint propagation,” IEEE Trans. Cybern., vol. 46, no. 1, pp. 233–244, Jan. 2016. doi: 10.1109/TCYB.2015.2399533
|
[37] |
D. Cai, X. F. He, J. W. Han, and T. S. Huang, “Graph regularized nonnegative matrix factorization for data representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548–1560, Aug. 2011. doi: 10.1109/TPAMI.2010.231
|
[38] |
X. Luo, M. C. Zhou, H. Leung, Y. N. Xia, Q. S. Zhu, Z. H. You, and S. Li, “An incremental-and-static-combined scheme for matrix-factorization- based collaborative filtering,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 1, pp. 333–343, Jan. 2016. doi: 10.1109/TASE.2014.2348555
|
[39] |
X. L. Li, G. S. Cui, and Y. S. Dong, “Graph regularized non-negative low-rank matrix factorization for image clustering,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3840–3853, Nov. 2017. doi: 10.1109/TCYB.2016.2585355
|
[40] |
R. H. Shang, W. B. Wang, R. Stolkin, and L. C. Jiao, “Non-negative spectral learning and sparse regression-based dual-graph regularized feature selection,” IEEE Trans. Cybern., vol. 48, no. 2, pp. 793–806, Feb. 2018. doi: 10.1109/TCYB.2017.2657007
|
[41] |
A. Ghaffari and E. Fatemizadeh, “Image registration based on low rank matrix: Rank-regularized SSD,” IEEE Trans. Med. Imaging, vol. 37, no. 1, pp. 138–150, Jan. 2018. doi: 10.1109/TMI.2017.2744663
|
[42] |
M. S. Shang, X. Luo, Z. G. Liu, J. Chen, Y. Yuan, and M. C. Zhou, “Randomized latent factor model for high-dimensional and sparse matrices from industrial applications,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 131–141, Jan. 2019. doi: 10.1109/JAS.2018.7511189
|
[43] |
X. Luo, Z. G. Liu, S. Li, M. S. Shang, and Z. D. Wang, “A fast non-negative latent factor model based on generalized momentum method,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 51, no. 1, pp. 610–620, Jan. 2021. doi: 10.1109/TSMC.2018.2875452
|
[44] |
X. Luo, M. C. Zhou, S. Li, L. Hu, and M. S. Shang, “Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1844–1855, May 2020. doi: 10.1109/TCYB.2019.2894283
|
[45] |
D. Wu, Q. He, X. Luo, M. S. Shang, Y. He, and G. Y. Wang, “A posterior-neighborhood-regularized latent factor model for highly accurate web service QoS prediction, ” IEEE Trans. Serv. Comput., to be published. DOI: 10.1109/TSC.2019.2961895
|
[46] |
X. Luo, Z. D. Wang, and M. S. Shang, “An instance-frequency-weighted regularization scheme for non-negative latent factor analysis on high-dimensional and sparse data,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published. DOI: 10.1109/TSMC.2019.2930525
|
[47] |
L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D:Nonlinear Phenom., vol. 60, no. 1-4, pp. 259–268, Nov. 1992. doi: 10.1016/0167-2789(92)90242-F
|
[48] |
W. He, H. Y. Zhang, and L. P. Zhang, “Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3909–3921, Jul. 2017. doi: 10.1109/TGRS.2017.2683719
|
[49] |
L. Tong, B. Qian, J. Yu, and C. B. Xiao, “Spectral and spatial total-variation-regularized multilayer non-negative matrix factorization for hyperspectral unmixing,” J. Appl. Remote Sens., vol. 13, no. 3, Article No. 036510, Sep. 2019.
|
[50] |
Y. Yuan, Z. H. Zhang, and Q. Wang, “Improved collaborative non-negative matrix factorization and total variation for hyperspectral unmixing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 998–1010, Mar. 2020. doi: 10.1109/JSTARS.2020.2977399
|
[51] |
C. C. Leng, G. R. Cai, D. D. Yu, and Z. Y. Wang, “Adaptive total-variation for non-negative matrix factorization on manifold,” Pattern Recognit. Lett., vol. 98, pp. 68–74, Oct. 2017. doi: 10.1016/j.patrec.2017.08.027
|
[52] |
H. L. Zhang, L. M. Tang, Z. Fang, C. C. Xiang, and C. Y. Li, “Nonconvex and nonsmooth total generalized variation model for image restoration,” Signal Process., vol. 143, pp. 69–85, Feb. 2018. doi: 10.1016/j.sigpro.2017.08.021
|
[53] |
W. D. Zhao, H. M. Lu, and D. Wang, “Multisensor image fusion and enhancement in spectral total variation domain,” IEEE Trans. Multimed., vol. 20, no. 4, pp. 866–879, Apr. 2018. doi: 10.1109/TMM.2017.2760100
|
[54] |
F. X. Yang, F. Ma, Z. L. Ping, and G. X. Xu, “Total variation and signature-based regularizations on coupled nonnegative matrix factorization for data fusion,” IEEE Access, vol. 7, pp. 2695–2706, Nov. 2018.
|
[55] |
T. P. Zhang, B. Fang, Y. Y. Tang, G. H. He, and J. Wen, “Topology preserving non-negative matrix factorization for face recognition,” IEEE Trans. Image Process., vol. 17, no. 4, pp. 574–584, Apr. 2008. doi: 10.1109/TIP.2008.918957
|
[56] |
H. Q. Yin and H. W. Liu, “Nonnegative matrix factorization with bounded total variational regularization for face recognition,” Pattern Recognit. Lett., vol. 31, no. 16, pp. 2468–2473, Dec. 2010. doi: 10.1016/j.patrec.2010.08.001
|
[57] |
C. C. Leng, Z. Chen, G. R. Cai, I. Cheng, Z. H. Xiong, J. Tian, and A. Basu, “Total variation constrained graph regularized NMF for medical image registration,” in Proc. the 12th IEEE Image, Video, and Multidimensional Signal Processing Workshop, Bordeaux, France, 2016, pp. 1–5.
|
[58] |
P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values,” Environmetrics, vol. 5, no. 2, pp. 111–126, Jun. 1994. doi: 10.1002/env.3170050203
|
[59] |
D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proc. 13th Int. Conf. Neural Information Processing Systems, Denver, USA, 2000, pp. 556–562.
|
[60] |
D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Prob., vol. 19, no. 6, pp. S165–S187, Nov. 2003. doi: 10.1088/0266-5611/19/6/059
|
[61] |
A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Roy. Stat. Soc.:Ser. B (Methodol.)
|
[62] |
D. Cai, X. He, and J. Han, “Document clustering using locality preserving indexing,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 12, pp. 1624–1637, Dec. 2005. doi: 10.1109/TKDE.2005.198
|
[63] |
R. Zass and A. Shashua, “Probabilistic graph and hypergraph matching,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, USA, 2008, pp. 1221–1228.
|
[64] |
C. Harris and M. Stephens, “A combined corner and edge detector,” in Proc. 4th Alvey Vision Conf., Manchester, UK, 1988, pp. 147–151.
|
[65] |
A. Myronenko and X. B. Song, “Point set registration: Coherent point drift,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2262–2275, Dec. 2010. doi: 10.1109/TPAMI.2010.46
|
[66] |
C. C. Leng, H. Zhang, G. R. Cai, Z. Chen, and A. Basu. “Total Variation Constrained Non-Negative Matrix Factorization for Medical Image Registration,” [Online]. Available: http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets, Accessed on: May 26, 2020.
|