IEEE/CAA Journal of Automatica Sinica
Citation: | T. Zhang, W. J. Song, M. Y. Fu, Y. Yang, and M. L. Wang, "Vehicle Motion Prediction at Intersections Based on the Turning Intention and Prior Trajectories Model," IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1657-1666, Oct. 2021. doi: 10.1109/JAS.2021.1003952 |
[1] |
E. H. Choi, “Crash factors in intersection-related crashes: An on-scene perspective,” National Center for Statistics and Analysis, Washington, USA, HS-811 366, 2010. [Online]. Available: https://trid.trb.org/view/1083638.
|
[2] |
C. Lienke, C. Wissing, M. Keller, T. Nattermann, and T. Bertram, “Predictive driving: Fusing prediction and planning for automated highway driving,” IEEE Trans. Intell. Veh., vol. 4, no. 3, pp. 456–467, Sep. 2019. doi: 10.1109/TIV.2019.2919477
|
[3] |
Y. P. Hu, W. Zhan, and M. Tomizuka, “Probabilistic prediction of vehicle semantic intention and motion,” in Proc. IEEE Intelligent Vehicles Symp., Changshu, China, 2018, pp. 307–313.
|
[4] |
A. Zyner, S. Worrall, and E. Nebot, “Naturalistic driver intention and path prediction using recurrent neural networks,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1584–1594, Apr. 2020. doi: 10.1109/TITS.2019.2913166
|
[5] |
N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs,” in Proc. IEEE Intelligent Vehicles Symposium, Changshu, China, 2018, pp. 1179–1184.
|
[6] |
B. Tang, S. Khokhar, and R. Gupta, “Turn prediction at generalized intersections,” in Proc. IEEE Intelligent Vehicles Symposium, Seoul, South Korea, 2015, pp. 1399–1404.
|
[7] |
D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable intention prediction of human drivers at intersections,” in Proc. IEEE Intelligent Vehicles Symposium, Los Angeles, USA, 2017, pp. 1665–1670.
|
[8] |
A. Zyner, S. Worrall, and E. Nebot, “A recurrent neural network solution for predicting driver intention at unsignalized intersections,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1759–1764, Jul. 2018. doi: 10.1109/LRA.2018.2805314
|
[9] |
F. Poggenhans, J. H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework for the future of automated driving,” in Proc. 21st Int. Conf. on Intelligent Transportation Systems, Maui, USA, 2018, pp. 1672–1679.
|
[10] |
P. Kumar, M. Perrollaz, S. Lefèvre, and C. Laugier, “Learning-based approach for online lane change intention prediction,” in Proc. IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, 2013, pp. 797–802.
|
[11] |
M. Schreier, V. Willert, and J. Adamy, “Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems,” in Proc. 17th Int. IEEE Conf. on Intelligent Transportation Systems, Qingdao, China, 2014, pp. 334–341.
|
[12] |
S. Yoon and D. Kum, “The multilayer perceptron approach to lateral motion prediction of surrounding vehicles for autonomous vehicles,” in Proc. IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 2016, pp. 1307–1312.
|
[13] |
G. T. Xie, H. B. Gao, L. J. Qian, B. Huang, K. Q. Li, and J. Q. Wang, “Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5999–6008, Jul. 2018. doi: 10.1109/TIE.2017.2782236
|
[14] |
A. Wolfermann, W. K. M. Alhajyaseen, and H. Nakamura, “Modeling speed profiles of turning vehicles at signalized intersections,” in Proc. 3rd Int. Conf. on Road Safety and Simulation, Indianapolis Indiana, USA, 2011.
|
[15] |
A. Kawasaki and T. Tasaki, “Trajectory prediction of turning vehicles based on intersection geometry and observed velocities,” in Proc. IEEE Intelligent Vehicles Symposium, Changshu, China, 2018, pp. 511–516.
|
[16] |
D. Roy, T. Ishizaka, C. K. Mohan, and A. Fukuda, “Vehicle trajectory prediction at intersections using interaction based generative adversarial networks,” in Proc. IEEE Intelligent Transportation Systems Conf., Auckland, New Zealand, 2019, pp. 2318–2323.
|
[17] |
H. B. Ma, J. C. Li, W. Zhan, and M. Tomizuka, “Wasserstein generative learning with kinematic constraints for probabilistic interactive driving behavior prediction,” in Proc. IEEE Intelligent Vehicles Symposium, Paris, France, 2019, pp. 2477–2483.
|
[18] |
R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, “Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 8475–8484.
|
[19] |
T. Y. Zhao, Y. F. Xu, M. Monfort, W. Choi, C. Baker, Y. B. Zhao, Y. Z. Wang, and Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory prediction,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 12118–12126.
|
[20] |
X. Li, X. W. Ying, and M. C. Chuah, “GRIP: Graph-based interaction-aware trajectory prediction,” in Proc. IEEE Intelligent Transportation Systems Conf., Auckland, New Zealand, 2019, pp. 3960–3966.
|
[21] |
R. Chandra, T. R. Guan, S. Panuganti, T. Mittal, U. Bhattacharya, A. Bera, and D. Manocha, “Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4882–4890, Jul. 2020. doi: 10.1109/LRA.2020.3004794
|
[22] |
J. C. Pan, H. Y. Sun, K. C. Xu, Y. F. Jiang, X. Q. Xiao, J. T. Hu, and J. H. Miao, “Lane attention: Predicting vehicles’ moving trajectories by learning their attention over lanes,” arXiv preprint arXiv: 1909.13377, 2019.
|
[23] |
N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle trajectory prediction,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018, pp. 1549–15498.
|
[24] |
M. P. Dubuisson and A. K. Jain, “A modified Hausdorff distance for object matching,” in Proc. 12th Int Conf. Pattern Recognition, Jerusalem, Israel, 1994, pp. 566–568.
|
[25] |
S. Atev, G. Miller, and N. P. Papanikolopoulos, “Clustering of vehicle trajectories,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 647–657, Sep. 2010. doi: 10.1109/TITS.2010.2048101
|
[26] |
L. Xin, P. Wang, C. Y. Chan, J. Y. Chen, S. E. Li, and B. Cheng, “Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks,” in Proc. 21st Int. Conf. Intelligent Transportation Systems, Maui, USA, 2018, pp. 1441–1446.
|
[27] |
J. Halkias and J. Colyar, “Ngsim overview. [Online]. Available: https://www.fhwa.dot.gov/publications/research/operations/its/06135/06135.pdf. Accessed on: July 26, 2020.
|
[28] |
B. Coifman and L. Z. Li, “A critical evaluation of the next generation simulation (NGSIM) vehicle trajectory dataset,” Transp. Res. B Methodol., vol. 105, pp. 362–377, Nov. 2017. doi: 10.1016/j.trb.2017.09.018
|
[29] |
R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems,” in Proc. 21st Int Conf. Intelligent Transportation Systems, Maui, USA, 2018, pp. 2118–2125.
|
[30] |
W. Zhan, L. T. Sun, D. Wang, H. J. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof, C. Stiller, A. de La Fortelle, and M. Tomizuka, “INTERACTION dataset: An Int., adversarial and cooperative moTION dataset in interactive driving scenarios with semantic maps,” arXiv preprint arXiv: 1910.03088, 2019.
|