IEEE/CAA Journal of Automatica Sinica
Citation: | Shuyi Xiao, Jiuxiang Dong, "Distributed Fault-Tolerant Containment Control for Nonlinear Multi-Agent Systems Under Directed Network Topology via Hierarchical Approach," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 806-816, Apr. 2021. doi: 10.1109/JAS.2021.1003928 |
[1] |
Y. Hong, J. Hu, and L. Gao, “Tracking control for multiagent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, Jul. 2006. doi: 10.1016/j.automatica.2006.02.013
|
[2] |
Q. Ma, J. Qin, W. X. Zheng, Y. Shi, and Y. Kang, “Exponential consensus of linear systems over switching network: A subspace method to establish necessity and sufficiency,” IEEE Trans. Cybern., to be published, DOI: 10.1109/TCY-B.2020.2991540.
|
[3] |
Z. Li, G. Wen, Z. Duan, and W. Ren, “Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152–1157, Apr. 2015. doi: 10.1109/TAC.2014.2350391
|
[4] |
Y. Lv, Z. Li, Z. Duan, and J. Chen, “Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input,” Automatica, vol. 74, pp. 308–314, Dec. 2016. doi: 10.1016/j.automatica.2016.07.041
|
[5] |
Y. Lv, Z. Li, Z. Duan, and G. Feng, “Novel distributed robust adaptive consensus protocols for linear multi-agent systems with directed graphs and external disturbances,” Int. J. Control, vol. 90, no. 2, pp. 137–147, 2017. doi: 10.1080/00207179.2016.1172259
|
[6] |
S. Zuo, F. L. Lewis, and A. Davoudi, “Resilient output containment of heterogeneous cooperative and adversarial multigroup systems,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 3104–3111, Jul. 2020.
|
[7] |
C. Chen, F. L. Lewis, S. Xie, H. Modares, Z. Liu, S. Zuo, and A. Davoudi, “Resilient adaptive and H∞ controls of multi-agent systems under sensor and actuator faults,” Automatica, vol. 102, no. 102, pp. 19–26, Apr. 2019.
|
[8] |
C. Deng and G. H. Yang, “Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multiagent systems,” Automatica, vol. 103, pp. 62–68, May 2019. doi: 10.1016/j.automatica.2019.01.013
|
[9] |
J. Mei, W. Ren, and G. Ma, “Distributed containment control for lagrangian networks with parametric uncertainties under a directed graph,” Automatica, vol. 48, no. 4, pp. 653–659, Apr. 2012. doi: 10.1016/j.automatica.2012.01.020
|
[10] |
X. Wang, S. Li, and P. Shi, “Distributed finite-time containment control for double-integrator multiagent systems,” IEEE Trans. Cybern., vol. 44, no. 9, pp. 1518–1528, Sep. 2014. doi: 10.1109/TCYB.2013.2288980
|
[11] |
Z. Li, W. Ren, X. Liu, and M. Fu, “Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders,” Int. J. Robust Nonlinear Control, vol. 23, no. 5, pp. 534–547, 2013. doi: 10.1002/rnc.1847
|
[12] |
Z. Li, Z. Duan, W. Ren, and G. Feng, “Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers,” Int. J. Robust Nonlinear Control, vol. 25, no. 13, pp. 2101–2121, 2015. doi: 10.1002/rnc.3195
|
[13] |
G. Wen, Y. Zhao, Z. Duan, W. Yu, and G. Chen, “Containment of higher-order multi-leader multi-agent systems: A dynamic output approach,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1135–1140, Apr. 2016. doi: 10.1109/TAC.2015.2465071
|
[14] |
Z. Peng, D. Wang, Y. Shi, H. Wang, and W. Wang, “Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders,” Inform. Sci., vol. 316, pp. 163–179, Sep. 2015. doi: 10.1016/j.ins.2015.04.025
|
[15] |
D. Wang, N. Zhang, J. Wang, and W. Wang, “Cooperative containment control of multiagent systems based on follower observers with time delay,” IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 1, pp. 13–23, Jan. 2017.
|
[16] |
J. Chen, Z. H. Guan, C. Yang, T. Li, D. X. He, and X. H. Zhang, “Distributed containment control of fractional-order uncertain multi-agent systems,” J. Franklin Inst., vol. 353, no. 7, pp. 1672–1688, May 2016. doi: 10.1016/j.jfranklin.2016.02.002
|
[17] |
Y. Li, C. Hua, S. Wu, and X. Guan, “Output feedback distributed containment control for high-order nonlinear multiagent systems,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 2032–2043, Aug. 2017. doi: 10.1109/TCYB.2017.2655054
|
[18] |
W. Wang and S. Tong, “Adaptive fuzzy containment control of nonlinear strict-feedback systems with full state constraints,” IEEE Trans. Fuzzy Syst., vol. 27, no. 10, pp. 2024–2038, Oct. 2019. doi: 10.1109/TFUZZ.2019.2893301
|
[19] |
Y. Wang, Y. Song, D. J. Hill, and M. Krstic, “Prescribedtime consensus and containment control of networked multiagent systems,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1138–1147, Apr. 2019. doi: 10.1109/TCYB.2017.2788874
|
[20] |
X. Dong, F. Meng, Z. Shi, G. Lu, and Y. Zhong, “Output containment control for swarm systems with general linear dynamics: A dynamic output feedback approach,” Syst. Control Lett., vol. 71, pp. 31–37, Sep. 2014. doi: 10.1016/j.sysconle.2014.06.007
|
[21] |
X. Dong, Z. Shi, G. Lu, and Y. Zhong, “Formation-containment analysis and design for high-order linear time-invariant swarm systems,” Int. J. Robust Nonlinear Control, vol. 25, no. 17, pp. 3439–3456, 2015. doi: 10.1002/rnc.3274
|
[22] |
X. Dong, Y. Hua, Y. Zhou, Z. Ren, and Y. Zhong, “Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 229–240, Jan. 2019. doi: 10.1109/TASE.2018.2792327
|
[23] |
J. Dong, Y. Wu, and G. H. Yang, “A new sensor fault isolation method for T-S fuzzy systems,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2437–2447, Jun. 2017. doi: 10.1109/TCYB.2017.2707422
|
[24] |
H. Wang, W. Bai, and P. X. Liu, “Finite-time adaptive faulttolerant control for nonlinear systems with multiple faults,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1417–1427, Nov. 2019. doi: 10.1109/JAS.2019.1911765
|
[25] |
X. Xie, D. Yue, H. Zhang, and Y. Xue, “Fault estimation observer design for discrete-time takagi-sugeno fuzzy systems based on homogenous polynomially parameter-dependent lyapunov functions,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2504–2513, Sep. 2017. doi: 10.1109/TCYB.2017.2693323
|
[26] |
J. Dong and G. H. Yang, “Reliable state feedback control of T-S fuzzy systems with sensor faults,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 421–433, Apr. 2015. doi: 10.1109/TFUZZ.2014.2315298
|
[27] |
X. J. Li and G. H. Yang, “Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures,” IET Control Theory Appl., vol. 6, no. 10, pp. 1544–1551, Jul. 2012. doi: 10.1049/iet-cta.2011.0599
|
[28] |
S. Xiao and J. Dong, “Robust adaptive fault-tolerant tracking control for uncertain linear systems with time-varying performance bounds,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 849–866, 2019. doi: 10.1002/rnc.4404
|
[29] |
L. B. Wu and J. H. Park, “Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 9, pp. 3470–3480, Sep. 2020.
|
[30] |
M. Liu, D. W. Ho, and P. Shi, “Adaptive fault-tolerant compensation control for markovian jump systems with mismatched external disturbance,” Automatica, vol. 58, pp. 5–14, Aug. 2015. doi: 10.1016/j.automatica.2015.04.022
|
[31] |
C. Deng and G. H. Yang, “Distributed adaptive fault-tolerant containment control for a class of multi-agent systems with nonidentical matching non-linear functions,” IET Control Theory Appl., vol. 10, no. 3, pp. 273–281, Jul. 2016. doi: 10.1049/iet-cta.2015.0638
|
[32] |
D. Ye, M. Chen, and K. Li, “Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics,” ISA Trans., vol. 71, pp. 32–39, Nov. 2017. doi: 10.1016/j.isatra.2017.06.007
|
[33] |
J. Zhang, D. W. Ding, and C. An, “Fault-tolerant containment control for linear multi-agent systems: An adaptive output regulation approach,” IEEE Access, vol. 7, pp. 89306–89315, Jul. 2019. doi: 10.1109/ACCESS.2019.2926619
|
[34] |
W. Wang, D. Wang, and Z. Peng, “Fault-tolerant containment control of uncertain nonlinear systems in strict-feedback form,” Int. J. Robust Nonlinear Control, vol. 27, no. 3, pp. 497–511, 2017. doi: 10.1002/rnc.3584
|
[35] |
S. J. Yoo, “A low-complexity design for distributed containment control of networked pure-feedback systems and its application to fault-tolerant control,” Int. J. Robust Nonlinear Control, vol. 27, no. 3, pp. 363–379, 2017. doi: 10.1002/rnc.3573
|
[36] |
Z. Qu, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, London, UK: Springer-Verlag, 2009.
|
[37] |
J. Yu, P. Shi, W. Dong, and C. Lin, “Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering,” IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 46–55, Feb. 2018. doi: 10.1109/TFUZZ.2016.2634162
|
[38] |
Y. Li, K. Sun, and S. Tong, “Adaptive fuzzy robust fault-tolerant optimal control for nonlinear large-scale systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2899–2914, Oct. 2018. doi: 10.1109/TFUZZ.2017.2787128
|
[39] |
Y. J. Liu, M. Gong, S. Tong, C. P. Chen, and D. J. Li, “Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2607–2617, Oct. 2018. doi: 10.1109/TFUZZ.2018.2798577
|
[40] |
B. Chen, X. Liu, and C. Lin, “Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1732–1743, Jun. 2018. doi: 10.1109/TFUZZ.2017.2750619
|
[41] |
L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 807–814, Sep. 1992. doi: 10.1109/72.159070
|
[42] |
C. Deng and G. H. Yang, “Distributed adaptive fuzzy control for nonlinear multiagent systems under directed graphs,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1356–1366, Jun. 2018.
|
[43] |
W. Gao, Y. Jiang, and M. Davari, “Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming,” IEEE Trans. Circuits Syst. II,Exp. Briefs, vol. 66, no. 3, pp. 447–451, Mar. 2019. doi: 10.1109/TCSII.2018.2849639
|
[44] |
W. Gao, Z. P. Jiang, F. L. Lewis, and Y. Wang, “Leader-toformation stability of multiagent systems: An adaptive optimal control approach,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3581–3587, Oct. 2018. doi: 10.1109/TAC.2018.2799526
|
[45] |
J. Qin, G. Zhang, W. X. Zheng, and Y. Kang, “Neural networkbased adaptive consensus control for a class of nonaffine nonlinear multiagent systems with actuator faults,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3633–3644, Dec. 2019. doi: 10.1109/TNNLS.2019.2901563
|
[46] |
C. Y. Su and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with fuzzy logic,” IEEE Trans. Fuzzy Syst., vol. 2, no. 4, pp. 285–294, Nov. 1994. doi: 10.1109/91.324808
|
[47] |
J. Qin, Q. Ma, X. Yu, and Y. Kang, “Output containment control for heterogeneous linear multiagent systems with fixed and switching topologies,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4117–4128, Dec. 2019. doi: 10.1109/TCYB.2018.2859159
|
[48] |
X. Wang and G. H. Yang, “Distributed reliable H∞ consensus control for a class of multi-agent systems under switching networks: A topology-based average dwell time approach,” Int. J. Robust Nonlinear Control, vol. 26, no. 13, pp. 2767–2787, 2016. doi: 10.1002/rnc.3474
|