IEEE/CAA Journal of Automatica Sinica
Citation: | Xueli Wang, Derui Ding, Hongli Dong, and Xian-Ming Zhang, "Neural-Network-Based Control for Discrete-Time Nonlinear Systems with Input Saturation Under Stochastic Communication Protocol," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 766-778, Apr. 2021. doi: 10.1109/JAS.2021.1003922 |
[1] |
M. Mazouchi, M. B. N. Sistani, and S. K. H. Sani, “A novel distributed optimal adaptive control algorithm for nonlinear multi-agent differential graphical games,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 331–341, Jan. 2018.
|
[2] |
Y. J. Liu, L. Tang, S. Tong, C. L. Chen, and D. J. Li, “Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 165–176, Jan. 2015.
|
[3] |
R. Song and L. Zhu, “Optimal fixed-point tracking control for discrete-time nonlinear systems via ADP,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 657–666, May 2019.
|
[4] |
L. Sun, and Z. Zheng, “Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 7994–8002, 2017.
|
[5] |
D. Wang, H. He, X. Zhong, and D. Liu, “Event-driven nonlinear discounted optimal regulation involving a power system application,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8177–8186, 2017.
|
[6] |
H. Li, Y. Wu and M. Chen, “Adaptive fault-tolerant tracking control for discrete-time multi-agent systems via reinforcement learning algorithm,” IEEE Trans. Cybern., to be published. DOI: 10.1109/TCYB.2020.2982168.
|
[7] |
T. Wang, H. Gao, and J. Qiu, “A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 416–425, 2016.
|
[8] |
H. Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503, 2009.
|
[9] |
Z. Shi and Z. Wang, “Optimal control for a class of complex singular system based on adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 188–197, Jan. 2019.
|
[10] |
R. Song, Q. Wei, H. Zhang, and F. L. Lewis, “Discrete-time non-zero-sum games with completely unknown dynamics,” IEEE Trans. Cybern., vol. 99, pp. 1–15, 2019. doi: 10.1109/TCYB.2019.2957406
|
[11] |
Q. Wei, and D. Liu, “Data-driven neuro-optimal temperature control of waterCgas shift reaction using stable iterative adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6399–6408, 2014.
|
[12] |
P. J. Werbos, “Foreword-ADP: the key direction for future research in intelligent control and understanding brain intelligence,” IEEE Trans. Syst. Man,Cybern. Part B, vol. 38, pp. 898–900, 2008.
|
[13] |
D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-Dynamic Programming,” Athena Scientific, USA, Belmont, MA, 1996.
|
[14] |
R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction”, Cambridge, MA, USA: MIT Press, 1998.
|
[15] |
A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof,” IEEE Trans. Syst. Man,Cybern. Part B, vol. 38, no. 4, pp. 943–949, 2008.
|
[16] |
A. Heydari, “Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4522–4527, Sept. 2018.
|
[17] |
Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 46, pp. 840–853, 2016.
|
[18] |
W. B. Powell, “Approximate Dynamic Programming,” IHoboken, NJ, USA: Wiley, 2007.
|
[19] |
D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, 1997.
|
[20] |
X. Zhong, N. Zhen, and H. He, “A theoretical foundation of goal representation heuristic dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst, vol. 27, no. 12, pp. 2513–2525, 2017.
|
[21] |
Y. Yuan, Z. Wang, P. Zhang, and H. Liu, “Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol,” IEEE Trans. Cybern., vol. 49, no. 8, pp. 1–13, 2018.
|
[22] |
M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.
|
[23] |
X. Yang and B. Zhao, “Optimal neuro-control strategy for nonlinear systems with asymmetric input constraints,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 575–583, Mar. 2020.
|
[24] |
D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints,” IEEE Trans. Cybern., vol. 45, no. 7, pp. 1372–1385, Jul. 2015.
|
[25] |
Y. J. Liu, S. Li, S. Tong, and C. L. P. Chen, “Neural approximation-based adaptive control for a class of nonlinear nonstrict feedback discrete-time systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 7, pp. 1531–1541, Jul. 2017.
|
[26] |
H. Xu, Q. Zhao, and S. Jagannathan, “Finite-horizon near-optimal output feedback neural network control of quantized nonlinear discrete-time systems with input constraint,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 8, pp. 1776–1788, Aug. 2015.
|
[27] |
Y. Zhu, D. Zhao, H. He, and J. Ji, “Event-triggered optimal control for partially unknown constrained-input systems via adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 4101–4109, 2017.
|
[28] |
H. Modares, F. L. Lewis, and M. Naghibi-Sistani, “Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1513–1525, 2013.
|
[29] |
D. Ding, Q. L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyber-physical systems: A survey,” IEEE Trans. Syst. Man, Cybern.: Syst., to be published. DOI: 10.1109/TSMC.2020.3041121.
|
[30] |
V. Ugrinovskii and E. Fridman, “A round-robin type protocol for distributed estimation with
|
[31] |
G. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked control systems,” IEEE Trans. Control Syst. Tech., vol. 10, no. 3, pp. 438–446, 2002.
|
[32] |
L. Zou, Z. Wang, and H. Gao, “Observer-based
|
[33] |
H. Ma, H. Li, R. Lu, and T. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci China Inf. Sci., vol. 63, no. 5, pp. 157–171, 2020.
|
[34] |
Z. Wang, Q. Wei, and D. Liu, “Event-triggered adaptive dynamic programming for discrete-time multi-player games,” Inf. Sci., vol. 506, pp. 457–470, Jan. 2020.
|
[35] |
D. Ding, Z. Wang, and Q. L. Han, “Neural-network-based consensus control for multi-agent systems with input constraints: The event-triggered case,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 1–12, 2019.
|
[36] |
X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12, pp. 2141–2155, 2014.
|
[37] |
D. Ding, Z. Wang, and Q. L. Han, “Neural-network-based output-feedback control with stochastic communication protocols,” Automatica, vol. 106, pp. 221–229, Aug. 2019.
|
[38] |
N. Azevedo, D. Pinheiro, and G.-W. Weber, “Dynamic programming for a Markov-switching jump-diffusion,” J Comput. Appl. Math., vol. 267, no. 6, pp. 1–19, Sep. 2014.
|
[39] |
M. C. F. Donkers, W. P. M. H. Heemels, and D. Bernardini, A. Bemporad, and V. Shneer, “Stability analysis of stochastic networked control systems,” Automatica, vol. 48, no. 4, pp. 917–925, 2012.
|
[40] |
T. Dierks, B. T. Thumati, and S. Jagannathan, “Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence,” Neural Networks, vol. 22, no. 5–6, pp. 851–860, 2009.
|
[41] |
B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE Trans. Autom. Control, vol. 51, no. 8, pp. 1249–1260, Aug. 2006.
|
[42] |
J. Song, Y. Niu, and Y. Zou, “Convergence analysis for an identifier-based adaptive dynamic programming algorithm,” In Proc. the 34th Chinese Control Conf., 2015.
|
[43] |
D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs,” Inf. Sci., vol. 220, no. 1, pp. 331–342, 2013.
|
[44] |
D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear Systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, 2014.
|