A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 4
Apr.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Junkang Ni, Peng Shi, Yu Zhao, and Zhonghua Wu, "Fixed-Time Output Consensus Tracking for High-Order Multi-Agent Systems With Directed Network Topology and Packet Dropout," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 817-836, Apr. 2021. doi: 10.1109/JAS.2021.1003916
Citation: Junkang Ni, Peng Shi, Yu Zhao, and Zhonghua Wu, "Fixed-Time Output Consensus Tracking for High-Order Multi-Agent Systems With Directed Network Topology and Packet Dropout," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 817-836, Apr. 2021. doi: 10.1109/JAS.2021.1003916

Fixed-Time Output Consensus Tracking for High-Order Multi-Agent Systems With Directed Network Topology and Packet Dropout

doi: 10.1109/JAS.2021.1003916
Funds:  This work was supported in part by the National Natural Science Foundation of China (61903302, 61973252, 61903126), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ-035), the Fundamental Research Funds for the Central Universities (31020180QD076, ZDHXYKYYW201914), Key R&D and Promotion Projects in Henan Province (202102210130), Key Scientific Research Projects of Universities in Henan Province-20A590001
More Information
  • This paper studies the problem of fixed-time output consensus tracking for high-order multi-agent systems (MASs) with directed network topology with consideration of data packet dropout. First, a predictive compensation based distributed observer is presented to compensate for packet dropout and estimate the leader’s states. Next, stability analysis is conducted to prove fixed time convergence of the developed distributed observer. Then, adaptive fixed-time dynamic surface control is designed to counteract mismatched disturbances introduced by observation error, and stabilize the tracking error system within a fixed time, which overcomes explosion of complexity problem and singularity problem. Finally, simulation results are provided to verify the effectiveness and superiority of the consensus tracking strategy proposed. The contribution of this paper is to provide a fixed-time distributed observer design method for high-order MAS under directed graph subject to packet dropout, and a novel fixed-time control strategy which can handle mismatched disturbances and overcome explosion of complexity and singularity problem.

     

  • loading
  • [1]
    P. Shi and Q. Shen, “Cooperative control of multi-agent systems with unknown state-dependent controlling effects,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 827–834, Jul. 2015. doi: 10.1109/TASE.2015.2403261
    [2]
    P. Shi and Q. Shen, “Observer-based leader-following consensus of uncertain nonlinear multi-agent systems,” Int. J. Robust and Nonlinear Control, vol. 27, no. 17, pp. 3794–3811, Nov. 2017.
    [3]
    K. Zhang, B. Jiang, X.-G. Yan, and J. P. Xia, “Distributed fault diagnosis of multi-agent systems with time-varying sensor faults,” ICIC Exp. Lett., vol. 14, no. 2, pp. 129–135, Feb. 2020.
    [4]
    R. Tanaka and H. Takahashi, “Multi-agent simulation approach of pedestrian flow with group walking models,” ICIC Exp. Lett. B,Appl., vol. 11, no. 4, pp. 363–371, Apr. 2020.
    [5]
    M. Y. Xu, P. Yang, Y. X. Wang, and Q. B. Shu, “Observer-based multiagent system fault upper bound estimation and fault-tolerant consensus control,” Int. J. Innov. Comput. Inf. Control, vol. 15, no. 2, pp. 519–534, Apr. 2019.
    [6]
    Y.-J. Pan, H. Werner, Z. P. Huang, and M. Bartels, “Distributed cooperative control of leader-follower multi-agent systems under packet dropouts for quadcopters,” Syst. Control Lett., vol. 106, pp. 47–57, Aug. 2017. doi: 10.1016/j.sysconle.2017.06.002
    [7]
    X. F. Deng, X. X. Sun, and S. G. Liu, “Iterative learning control for leader-following consensus of nonlinear multi-agent systems with packet dropout,” Int. J. Control Automat. Syst, vol. 17, no. 8, pp. 2135–2144, May 2019. doi: 10.1007/s12555-018-0329-x
    [8]
    H. Shen, Y. Z. Men, Z.-G. Wu, J. D. Cao, and G. P. Lu, “Networkbased quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 66, no. 3, pp. 1130–1140, Mar. 2019. doi: 10.1109/TCSI.2018.2876937
    [9]
    M. Yu, C. Yan, D. M. Xie, and G. M. Xie, “Event-triggered tracking consensus with packet losses and time-varying delays,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 165–173, Apr. 2016. doi: 10.1109/JAS.2016.7451104
    [10]
    L. Shi, W. X. Zheng, J. L. Shao, and Y. H. Cheng, “Scaled tracking consensus in discrete-time second-order multiagent systems with random packet dropouts,” IEEE Trans. Syst., Man, Cybern., Syst.,
    [11]
    Z. L. Liu, W. S. Yan, H. P. Li, and M. Small, “Cooperative output regulation problem of multi-agent systems with stochastic packet dropout and time-varying communication delay,” J. Franklin Inst., vol. 355, no. 17, pp. 8664–8682, Nov. 2018. doi: 10.1016/j.jfranklin.2018.09.010
    [12]
    W. Chen, D. R. Ding, G. L. Wei, S. J. Zhang, and Y. R. Li, “Event-based containment control for multi-agent systems with packet dropouts,” Int. J. Syst. Sci., vol. 49, no. 12, pp. 2658–2669, 2018. doi: 10.1080/00207721.2018.1508787
    [13]
    W. B. Zhang, Y. Tang, T. W. Huang, and J. Kürths, “Sampled-data consensus of linear multi-agent systems with packet losses,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 11, pp. 2516–2527, Nov. 2017. doi: 10.1109/TNNLS.2016.2598243
    [14]
    L. X. Zhang, Z. P. Ning, and P. Shi, “Input-output approach to control for fuzzy Markov jump systems with time-varying delays and uncertain packet dropout rate,” IEEE Trans. Cybern., vol. 45, no. 11, pp. 2449–2460, Nov. 2015. doi: 10.1109/TCYB.2014.2374694
    [15]
    Z. K. Li and J. Chen, “Robust consensus for multi-agent systems communicating over stochastic uncertain network,” SIAM J. Control Optim., vol. 57, no. 5, pp. 3553–3570, 2019. doi: 10.1137/18M1181614
    [16]
    B. Zhang, C. X. Dou, D. Yue, Z. Q. Zhang, and T. F. Zhang, “A packet loss-dependent event-triggered cyber-physical cooperative control strategy for islanded microgrid,” IEEE Trans. Cybern.,
    [17]
    Z.-Q. Liu, Y.-L. Wang, and T.-B. Wang, “Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems,” Inf. Sci., vol. 457-458, pp. 166–181, Aug. 2018. doi: 10.1016/j.ins.2018.03.011
    [18]
    M. L. Xing and F. Q. Deng, “Event-triggered sampled-data consensus of nonlinear multi-agent systems with control input losses,” J. Syst. Sci. Complex, vol. 31, pp. 1469–1497, Dec. 2018. doi: 10.1007/s11424-018-7096-x
    [19]
    G. H. Wen, G. Q. Hu, W. W. Yu, J. D. Cao, and G. R. Chen, “Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs,” Syst. Control Lett., vol. 62, no. 12, pp. 1151–1158, Dec. 2013. doi: 10.1016/j.sysconle.2013.09.009
    [20]
    C. X. Dou, B. Zhang, D. Yue, Z. Q. Zhang, S. Y. Xu, T. Hayat, and A. Alsaedi, “A novel hierarchical control strategy combined with sliding mode control and consensus control for islanded micro-grid,” IET Renew. Power Gener., vol. 12, no. 9, pp. 1012–1024, Sept. 2018. doi: 10.1049/iet-rpg.2017.0754
    [21]
    Y. Y. Wang, H. R. Karimi, H.-K. Lam, and H. C. Yan, “Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2369–2379, Jun. 2020. doi: 10.1109/TCYB.2019.2920709
    [22]
    B. D. Ning, Q. L. Han, and Q. Lu, “Fixed-time leader-following consensus for multiple wheeled mobile robots,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2019.2955543
    [23]
    Y. M. Wu and Z. S. Wang, “Fuzzy adaptive practical fixed-time consensus for second-order nonlinear multiagent systems under actuator faults,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2019.2963681
    [24]
    J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2019.2957069
    [25]
    J. Liu, Y. L. Zhang, C. Y. Sun, and Y. Yu, “Fixed-time consensus of multiagent systems with input delay and uncertain disturbances via eventtriggered control,” Inf. Sci., vol. 480, pp. 261–272, Apr. 2019. doi: 10.1016/j.ins.2018.12.037
    [26]
    T. Xu, G. N. Lv, Z. S. Duan, Z. Y. Sun, and J. Z. Yu, “Distributed fixed-time triggering-based containment control for networked nonlinear agents under directed graphs,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 67, no. 10, pp. 3541–3552, 2020. doi: 10.1109/TCSI.2020.2991101
    [27]
    J. K. Ni, L. Liu, Y. Tang, and C. X. Liu, “Predefined-time consensus tracking of second-order multiagent systems,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.2916257
    [28]
    J. K. Ni, Y. Tang, and P. Shi, “A new fixed-time consensus tracking approach for second-order multiagent systems under directed communication topology,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.2915562
    [29]
    B. D. Ning, X. H. Yu, G. H. Wen, and Z. W. Cao, “Finite-time bipartite tracking control for double-integrator networked systems with cooperative and antagonistic interaction,” IEEE Trans. Circuits Syst. I,Reg. Papers, 2020. DOI: 10.1109/TCSI.2020.2996312
    [30]
    Y. Huang and Y. M. Jia, “Fixed-time consensus tracking control for second-order multi-agent systems with bounded input uncertainties via NFFTSM,” IET Control Theory Appl., vol. 11, no. 16, pp. 2900–2909, Nov. 2017. doi: 10.1049/iet-cta.2017.0304
    [31]
    G. F. Li, Y. J. Wu, and X. C. Liu, “Adaptive fixed-time consensus tracking control method for second-order multi-agent systems with disturbances,” J. Franklin Inst, vol. 357, no. 3, pp. 1516–1531, Feb. 2020. doi: 10.1016/j.jfranklin.2019.10.035
    [32]
    H. J. Yang and D. Ye, “Distributed fixed-time consensus tracking control of uncertain nonlinear multiagent systems: A prioritized strategy,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2627–2638, Jun. 2020. doi: 10.1109/TCYB.2019.2925123
    [33]
    J. K. Ni, “Fixed-time terminal sliding mode tracking protocol design for high-order multiagent systems with directed communication topology,” ISA Trans., 2020. DOI: 10.1016/j.isatra.2020.02.022
    [34]
    B. D. Ning, J. Jin, J. C. Zheng, and Z. H. Man, “Finite-time and fixed-time leader-following consensus for multi-agent systems with discontinuous inherent dynamics,” Int. J. Control, vol. 91, no. 6, pp. 1259–1270, 2018. doi: 10.1080/00207179.2017.1313453
    [35]
    B. D. Ning and Q. L. Han, “Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1686–1693, Apr. 2019. doi: 10.1109/TAC.2018.2852605
    [36]
    Y. Huang and Y. M. Jia, “Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback,” Nonlinear Dyn., vol. 91, no. 3, pp. 1289–1306, Feb. 2018.
    [37]
    Y. Zhang, X. Wang, and S. J. Tang, “A globally fixed-time solution of distributed formation control for multiple hypersonic gliding vehicles,” Aerosp. Sci. Technol., vol. 98, pp. 105643, Mar. 2020. doi: 10.1016/j.ast.2019.105643
    [38]
    J. K. Ni and P. Shi, “Adaptive neural network fixed-time leader-follower consensus for multiagent systems with constraints and disturbances,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.2967995
    [39]
    J. K. Ni, L. Liu, C. X. Liu, and J. Liu, “Fixed-time leader-following consensus for second-order multiagent systems with input delay,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8635–8646, Nov. 2017. doi: 10.1109/TIE.2017.2701775
    [40]
    Z. Y. Zuo, Q.-L. Han, B. D. Ning, X. H. Ge, and X.-M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Inf., vol. 14, no. 6, pp. 2322–2334, Jun. 2018. doi: 10.1109/TII.2018.2817248
    [41]
    H. W. Zhang, Z. K. Li, Z. K. Qu, and F. L. Lewis, “On constructing Lyapunov functions for multi-agent systems,” Automatica, vol. 58, pp. 39–42, Aug. 2015. doi: 10.1016/j.automatica.2015.05.006
    [42]
    Y. Zhao, H. Gao, and T. Chen, “Fuzzy constrained predictive control of non-linear systems with packet dropouts,” IET Control Theory Appl., vol. 4, no. 9, pp. 1665–1677, Sept. 2010. doi: 10.1049/iet-cta.2009.0274
    [43]
    H. J. Yang, S. Ju, Y. Q. Xia, and J. H. Zhang, “Predictive cloud control for networked multiagent systems with quantized signals under DoS attacks,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.896087
    [44]
    Y. Zhang, R. Vepa, G. Li, and T. Y. Zeng, “Mars powered descent phase guidance design based on fixed-time stabilization technique,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 4, pp. 2001–2011, Aug. 2019. doi: 10.1109/TAES.2018.2880051
    [45]
    S. M. Esmaeilzadeh, M. Golestani, and S. Mobayen, “Chattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraft,” Int. J. Control Autom. Syst., 2020. DOI: 10.1007/s12555-020-0043-3
    [46]
    Y. N. Pan, P. H. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.2999746
    [47]
    H. J. Liang, G. L. Liu, T. W. Huang, H.-K. Lam, and B. H. Wang, “Cooperative fault-tolerant control for networks of stochastic nonlinear systems with nondifferential saturation nonlinearity,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2020. DOI: 10.1109/TSMC.2020.3020188
    [48]
    X.-K. Liu, Y.-W. Wang, J.-W. Xiao, and W. Yang, “Distributed hierarchical control design of coupled heterogeneous linear systems under switching networks,” Int. J. Robust Nonlinear Control, vol. 27, no. 8, pp. 1242–1259, May 2017. doi: 10.1002/rnc.3625
    [49]
    G. Hardy, J. Littlewood, and G. Polya, Inequalities. London, U.K.: Cambridge Univ. Press, 1951.
    [50]
    C. Wang and Y. Lin, “Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems,” Automatica, vol. 54, pp. 16–24, Apr. 2015. doi: 10.1016/j.automatica.2015.01.041
    [51]
    M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear control design,” Automatica, vol. 32, no. 3, pp. 423–427, Mar. 1996. doi: 10.1016/0005-1098(95)00147-6
    [52]
    A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, vol. 34, no. 3, pp. 379–384, Mar. 1998. doi: 10.1016/S0005-1098(97)00209-4
    [53]
    R. Findeisen and P. Varutti, “Stabilizing nonlinear predictive control over nondeterministic communication networks” in Nonlinear Model Predictive Control, Berlin, Germany: Springer-Verlag, pp. 167–179, 2009.
    [54]
    D. E. Quevedo and D. Nešić, “Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 370–375, Feb. 2011. doi: 10.1109/TAC.2010.2095950
    [55]
    D. M. de la Pea and P. D. Christofides, “Lyapunov-based model predictive control of nonlinear systems subject to data losses,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2076–2089, Oct. 2008. doi: 10.1109/TAC.2008.929401
    [56]
    J. J. Carroll and D. M. Dawson, “Integrator backstepping techniques for the tracking control of permanent magnet brush DC motors,” IEEE Trans Ind Appl, vol. 31, no. 2, pp. 248–255, Mar./Apr. 1995. doi: 10.1109/28.370270
    [57]
    Y. W. Wang, Y. Lei, T. Bian, and Z.-H. Guan, “Distributed control of nonlinear multiagent systems with unknown and nonidentical control directions via event-triggered communication,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1820–1832, May 2020. doi: 10.1109/TCYB.2019.2908874
    [58]
    H. J. Liang, G. L. Liu, H. G. Zhang, and T. W. Huang, “Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2020.3003950
    [59]
    H. Ma, H. Y. Li, R. Q. Lu, and T. W. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci. China Inf. Sci., vol. 63, no. 5, pp. 150212, Mar. 2020. doi: 10.1007/s11432-019-2680-1
    [60]
    G. H. Lin, H. Y. Li, H. Ma, D. Y. Yao, and R. Q. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, 2020. DOI: 10.1109/JAS.2020.1003596
    [61]
    G. W. Dong, L. Cao, D. Y. Yao, H. Y. Li, and R. Q. Lu, “Adaptive attitude control for multi-MUAVs with output dead-zone and actuator fault,” IEEE/CAA J. Autom. Sinica, 2020. DOI: 10.1109/JAS.2020.1003605

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (4981) PDF downloads(133) Cited by()

    Highlights

    • Addresses fixed-time consensus tracking of high-order MAS under directed graph and packet dropout.
    • Proposes fixed-time distributed observer to deal with directed graph and packet dropout.
    • Proposes fixed-time DSC to handle mismatched disturbances and singularity problem.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return