IEEE/CAA Journal of Automatica Sinica
Citation: | Junkang Ni, Peng Shi, Yu Zhao, and Zhonghua Wu, "Fixed-Time Output Consensus Tracking for High-Order Multi-Agent Systems With Directed Network Topology and Packet Dropout," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 817-836, Apr. 2021. doi: 10.1109/JAS.2021.1003916 |
[1] |
P. Shi and Q. Shen, “Cooperative control of multi-agent systems with unknown state-dependent controlling effects,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 827–834, Jul. 2015. doi: 10.1109/TASE.2015.2403261
|
[2] |
P. Shi and Q. Shen, “Observer-based leader-following consensus of uncertain nonlinear multi-agent systems,” Int. J. Robust and Nonlinear Control, vol. 27, no. 17, pp. 3794–3811, Nov. 2017.
|
[3] |
K. Zhang, B. Jiang, X.-G. Yan, and J. P. Xia, “Distributed fault diagnosis of multi-agent systems with time-varying sensor faults,” ICIC Exp. Lett., vol. 14, no. 2, pp. 129–135, Feb. 2020.
|
[4] |
R. Tanaka and H. Takahashi, “Multi-agent simulation approach of pedestrian flow with group walking models,” ICIC Exp. Lett. B,Appl., vol. 11, no. 4, pp. 363–371, Apr. 2020.
|
[5] |
M. Y. Xu, P. Yang, Y. X. Wang, and Q. B. Shu, “Observer-based multiagent system fault upper bound estimation and fault-tolerant consensus control,” Int. J. Innov. Comput. Inf. Control, vol. 15, no. 2, pp. 519–534, Apr. 2019.
|
[6] |
Y.-J. Pan, H. Werner, Z. P. Huang, and M. Bartels, “Distributed cooperative control of leader-follower multi-agent systems under packet dropouts for quadcopters,” Syst. Control Lett., vol. 106, pp. 47–57, Aug. 2017. doi: 10.1016/j.sysconle.2017.06.002
|
[7] |
X. F. Deng, X. X. Sun, and S. G. Liu, “Iterative learning control for leader-following consensus of nonlinear multi-agent systems with packet dropout,” Int. J. Control Automat. Syst, vol. 17, no. 8, pp. 2135–2144, May 2019. doi: 10.1007/s12555-018-0329-x
|
[8] |
H. Shen, Y. Z. Men, Z.-G. Wu, J. D. Cao, and G. P. Lu, “Networkbased quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 66, no. 3, pp. 1130–1140, Mar. 2019. doi: 10.1109/TCSI.2018.2876937
|
[9] |
M. Yu, C. Yan, D. M. Xie, and G. M. Xie, “Event-triggered tracking consensus with packet losses and time-varying delays,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 165–173, Apr. 2016. doi: 10.1109/JAS.2016.7451104
|
[10] |
L. Shi, W. X. Zheng, J. L. Shao, and Y. H. Cheng, “Scaled tracking consensus in discrete-time second-order multiagent systems with random packet dropouts,” IEEE Trans. Syst., Man, Cybern., Syst.,
|
[11] |
Z. L. Liu, W. S. Yan, H. P. Li, and M. Small, “Cooperative output regulation problem of multi-agent systems with stochastic packet dropout and time-varying communication delay,” J. Franklin Inst., vol. 355, no. 17, pp. 8664–8682, Nov. 2018. doi: 10.1016/j.jfranklin.2018.09.010
|
[12] |
W. Chen, D. R. Ding, G. L. Wei, S. J. Zhang, and Y. R. Li, “Event-based containment control for multi-agent systems with packet dropouts,” Int. J. Syst. Sci., vol. 49, no. 12, pp. 2658–2669, 2018. doi: 10.1080/00207721.2018.1508787
|
[13] |
W. B. Zhang, Y. Tang, T. W. Huang, and J. Kürths, “Sampled-data consensus of linear multi-agent systems with packet losses,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 11, pp. 2516–2527, Nov. 2017. doi: 10.1109/TNNLS.2016.2598243
|
[14] |
L. X. Zhang, Z. P. Ning, and P. Shi, “Input-output approach to control for fuzzy Markov jump systems with time-varying delays and uncertain packet dropout rate,” IEEE Trans. Cybern., vol. 45, no. 11, pp. 2449–2460, Nov. 2015. doi: 10.1109/TCYB.2014.2374694
|
[15] |
Z. K. Li and J. Chen, “Robust consensus for multi-agent systems communicating over stochastic uncertain network,” SIAM J. Control Optim., vol. 57, no. 5, pp. 3553–3570, 2019. doi: 10.1137/18M1181614
|
[16] |
B. Zhang, C. X. Dou, D. Yue, Z. Q. Zhang, and T. F. Zhang, “A packet loss-dependent event-triggered cyber-physical cooperative control strategy for islanded microgrid,” IEEE Trans. Cybern.,
|
[17] |
Z.-Q. Liu, Y.-L. Wang, and T.-B. Wang, “Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems,” Inf. Sci., vol. 457-458, pp. 166–181, Aug. 2018. doi: 10.1016/j.ins.2018.03.011
|
[18] |
M. L. Xing and F. Q. Deng, “Event-triggered sampled-data consensus of nonlinear multi-agent systems with control input losses,” J. Syst. Sci. Complex, vol. 31, pp. 1469–1497, Dec. 2018. doi: 10.1007/s11424-018-7096-x
|
[19] |
G. H. Wen, G. Q. Hu, W. W. Yu, J. D. Cao, and G. R. Chen, “Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs,” Syst. Control Lett., vol. 62, no. 12, pp. 1151–1158, Dec. 2013. doi: 10.1016/j.sysconle.2013.09.009
|
[20] |
C. X. Dou, B. Zhang, D. Yue, Z. Q. Zhang, S. Y. Xu, T. Hayat, and A. Alsaedi, “A novel hierarchical control strategy combined with sliding mode control and consensus control for islanded micro-grid,” IET Renew. Power Gener., vol. 12, no. 9, pp. 1012–1024, Sept. 2018. doi: 10.1049/iet-rpg.2017.0754
|
[21] |
Y. Y. Wang, H. R. Karimi, H.-K. Lam, and H. C. Yan, “Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2369–2379, Jun. 2020. doi: 10.1109/TCYB.2019.2920709
|
[22] |
B. D. Ning, Q. L. Han, and Q. Lu, “Fixed-time leader-following consensus for multiple wheeled mobile robots,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2019.2955543
|
[23] |
Y. M. Wu and Z. S. Wang, “Fuzzy adaptive practical fixed-time consensus for second-order nonlinear multiagent systems under actuator faults,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2019.2963681
|
[24] |
J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2019.2957069
|
[25] |
J. Liu, Y. L. Zhang, C. Y. Sun, and Y. Yu, “Fixed-time consensus of multiagent systems with input delay and uncertain disturbances via eventtriggered control,” Inf. Sci., vol. 480, pp. 261–272, Apr. 2019. doi: 10.1016/j.ins.2018.12.037
|
[26] |
T. Xu, G. N. Lv, Z. S. Duan, Z. Y. Sun, and J. Z. Yu, “Distributed fixed-time triggering-based containment control for networked nonlinear agents under directed graphs,” IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 67, no. 10, pp. 3541–3552, 2020. doi: 10.1109/TCSI.2020.2991101
|
[27] |
J. K. Ni, L. Liu, Y. Tang, and C. X. Liu, “Predefined-time consensus tracking of second-order multiagent systems,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.2916257
|
[28] |
J. K. Ni, Y. Tang, and P. Shi, “A new fixed-time consensus tracking approach for second-order multiagent systems under directed communication topology,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.2915562
|
[29] |
B. D. Ning, X. H. Yu, G. H. Wen, and Z. W. Cao, “Finite-time bipartite tracking control for double-integrator networked systems with cooperative and antagonistic interaction,” IEEE Trans. Circuits Syst. I,Reg. Papers, 2020. DOI: 10.1109/TCSI.2020.2996312
|
[30] |
Y. Huang and Y. M. Jia, “Fixed-time consensus tracking control for second-order multi-agent systems with bounded input uncertainties via NFFTSM,” IET Control Theory Appl., vol. 11, no. 16, pp. 2900–2909, Nov. 2017. doi: 10.1049/iet-cta.2017.0304
|
[31] |
G. F. Li, Y. J. Wu, and X. C. Liu, “Adaptive fixed-time consensus tracking control method for second-order multi-agent systems with disturbances,” J. Franklin Inst, vol. 357, no. 3, pp. 1516–1531, Feb. 2020. doi: 10.1016/j.jfranklin.2019.10.035
|
[32] |
H. J. Yang and D. Ye, “Distributed fixed-time consensus tracking control of uncertain nonlinear multiagent systems: A prioritized strategy,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2627–2638, Jun. 2020. doi: 10.1109/TCYB.2019.2925123
|
[33] |
J. K. Ni, “Fixed-time terminal sliding mode tracking protocol design for high-order multiagent systems with directed communication topology,” ISA Trans., 2020. DOI: 10.1016/j.isatra.2020.02.022
|
[34] |
B. D. Ning, J. Jin, J. C. Zheng, and Z. H. Man, “Finite-time and fixed-time leader-following consensus for multi-agent systems with discontinuous inherent dynamics,” Int. J. Control, vol. 91, no. 6, pp. 1259–1270, 2018. doi: 10.1080/00207179.2017.1313453
|
[35] |
B. D. Ning and Q. L. Han, “Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1686–1693, Apr. 2019. doi: 10.1109/TAC.2018.2852605
|
[36] |
Y. Huang and Y. M. Jia, “Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback,” Nonlinear Dyn., vol. 91, no. 3, pp. 1289–1306, Feb. 2018.
|
[37] |
Y. Zhang, X. Wang, and S. J. Tang, “A globally fixed-time solution of distributed formation control for multiple hypersonic gliding vehicles,” Aerosp. Sci. Technol., vol. 98, pp. 105643, Mar. 2020. doi: 10.1016/j.ast.2019.105643
|
[38] |
J. K. Ni and P. Shi, “Adaptive neural network fixed-time leader-follower consensus for multiagent systems with constraints and disturbances,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.2967995
|
[39] |
J. K. Ni, L. Liu, C. X. Liu, and J. Liu, “Fixed-time leader-following consensus for second-order multiagent systems with input delay,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8635–8646, Nov. 2017. doi: 10.1109/TIE.2017.2701775
|
[40] |
Z. Y. Zuo, Q.-L. Han, B. D. Ning, X. H. Ge, and X.-M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Inf., vol. 14, no. 6, pp. 2322–2334, Jun. 2018. doi: 10.1109/TII.2018.2817248
|
[41] |
H. W. Zhang, Z. K. Li, Z. K. Qu, and F. L. Lewis, “On constructing Lyapunov functions for multi-agent systems,” Automatica, vol. 58, pp. 39–42, Aug. 2015. doi: 10.1016/j.automatica.2015.05.006
|
[42] |
Y. Zhao, H. Gao, and T. Chen, “Fuzzy constrained predictive control of non-linear systems with packet dropouts,” IET Control Theory Appl., vol. 4, no. 9, pp. 1665–1677, Sept. 2010. doi: 10.1049/iet-cta.2009.0274
|
[43] |
H. J. Yang, S. Ju, Y. Q. Xia, and J. H. Zhang, “Predictive cloud control for networked multiagent systems with quantized signals under DoS attacks,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.896087
|
[44] |
Y. Zhang, R. Vepa, G. Li, and T. Y. Zeng, “Mars powered descent phase guidance design based on fixed-time stabilization technique,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 4, pp. 2001–2011, Aug. 2019. doi: 10.1109/TAES.2018.2880051
|
[45] |
S. M. Esmaeilzadeh, M. Golestani, and S. Mobayen, “Chattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraft,” Int. J. Control Autom. Syst., 2020. DOI: 10.1007/s12555-020-0043-3
|
[46] |
Y. N. Pan, P. H. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.2999746
|
[47] |
H. J. Liang, G. L. Liu, T. W. Huang, H.-K. Lam, and B. H. Wang, “Cooperative fault-tolerant control for networks of stochastic nonlinear systems with nondifferential saturation nonlinearity,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2020. DOI: 10.1109/TSMC.2020.3020188
|
[48] |
X.-K. Liu, Y.-W. Wang, J.-W. Xiao, and W. Yang, “Distributed hierarchical control design of coupled heterogeneous linear systems under switching networks,” Int. J. Robust Nonlinear Control, vol. 27, no. 8, pp. 1242–1259, May 2017. doi: 10.1002/rnc.3625
|
[49] |
G. Hardy, J. Littlewood, and G. Polya, Inequalities. London, U.K.: Cambridge Univ. Press, 1951.
|
[50] |
C. Wang and Y. Lin, “Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems,” Automatica, vol. 54, pp. 16–24, Apr. 2015. doi: 10.1016/j.automatica.2015.01.041
|
[51] |
M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear control design,” Automatica, vol. 32, no. 3, pp. 423–427, Mar. 1996. doi: 10.1016/0005-1098(95)00147-6
|
[52] |
A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, vol. 34, no. 3, pp. 379–384, Mar. 1998. doi: 10.1016/S0005-1098(97)00209-4
|
[53] |
R. Findeisen and P. Varutti, “Stabilizing nonlinear predictive control over nondeterministic communication networks” in Nonlinear Model Predictive Control, Berlin, Germany: Springer-Verlag, pp. 167–179, 2009.
|
[54] |
D. E. Quevedo and D. Nešić, “Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 370–375, Feb. 2011. doi: 10.1109/TAC.2010.2095950
|
[55] |
D. M. de la Pea and P. D. Christofides, “Lyapunov-based model predictive control of nonlinear systems subject to data losses,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2076–2089, Oct. 2008. doi: 10.1109/TAC.2008.929401
|
[56] |
J. J. Carroll and D. M. Dawson, “Integrator backstepping techniques for the tracking control of permanent magnet brush DC motors,” IEEE Trans Ind Appl, vol. 31, no. 2, pp. 248–255, Mar./Apr. 1995. doi: 10.1109/28.370270
|
[57] |
Y. W. Wang, Y. Lei, T. Bian, and Z.-H. Guan, “Distributed control of nonlinear multiagent systems with unknown and nonidentical control directions via event-triggered communication,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1820–1832, May 2020. doi: 10.1109/TCYB.2019.2908874
|
[58] |
H. J. Liang, G. L. Liu, H. G. Zhang, and T. W. Huang, “Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2020.3003950
|
[59] |
H. Ma, H. Y. Li, R. Q. Lu, and T. W. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci. China Inf. Sci., vol. 63, no. 5, pp. 150212, Mar. 2020. doi: 10.1007/s11432-019-2680-1
|
[60] |
G. H. Lin, H. Y. Li, H. Ma, D. Y. Yao, and R. Q. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, 2020. DOI: 10.1109/JAS.2020.1003596
|
[61] |
G. W. Dong, L. Cao, D. Y. Yao, H. Y. Li, and R. Q. Lu, “Adaptive attitude control for multi-MUAVs with output dead-zone and actuator fault,” IEEE/CAA J. Autom. Sinica, 2020. DOI: 10.1109/JAS.2020.1003605
|