IEEE/CAA Journal of Automatica Sinica
Citation: | J. P. Li, Y. L. Tao, and T. Cai, "Predicting Lung Cancers Using Epidemiological Data: A Generative-Discriminative Framework," IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1067-1078, May. 2021. doi: 10.1109/JAS.2021.1003910 |
[1] |
L. A. Torre, R. L. Siegel, and A. Jemal, “Lung cancer statistics,” in Lung Cancer and Personalized Medicine. Switzerland: Springer, 2016, pp. 1–19.
|
[2] |
W. Q. Chen, R. S. Zheng, P. D. Baade, S. W. Zhang, H. M. Zeng, F. Bray, A. Jemal, X. Q. Yu, and J. He, “Cancer statistics in China, 2015,” CA Cancer J. Clin., vol. 66, no. 2, pp. 115–132, Mar.–Apr. 2016. doi: 10.3322/caac.21338
|
[3] |
C. I. Henschke, D. I. McCauley, D. F. Yankelevitz, D. P. Naidich, G. McGuinness, O. S. Miettinen, D. M. Libby, M. W. Pasmantier, J. Koizumi, N. K. Altorki, and J. P. Smith, “Early Lung Cancer Action Project: Overall design and findings from baseline screening,” Lancet, vol. 354, no. 9173, pp. 99–105, Jul. 1999. doi: 10.1016/S0140-6736(99)06093-6
|
[4] |
G. A. Colditz, K. A. Atwood, K. Emmons, R. R. Monson, W. C. Willett, D. Trichopoulos, and D. J. Hunter, “Harvard report on cancer prevention volume 4: Harvard cancer risk index,” Cancer Causes Control, vol. 11, no. 6, pp. 477–488, Jul. 2000. doi: 10.1023/A:1008984432272
|
[5] |
E. P. Gray, M. D. Teare, J. Stevens, and R. Archer, “Risk prediction models for lung cancer: A systematic review,” Clinical Lung Cancer, vol. 17, no. 2, pp. 95–106, Mar. 2016. doi: 10.1016/j.cllc.2015.11.007
|
[6] |
Q. Y. Hong, G. M. Wu, G. S. Qian, C. P. Hu, J. Y. Zhou, L. A. Chen, W. M. Li, S. Y. Li, K. Wang, Q. Wang, X. J. Zhang, J. Li, X. Gong, and C. X. Bai, “Prevention and management of lung cancer in China,” Cancer, vol. 121, no. S17, pp. 3080–3088, Sep. 2015. doi: 10.1002/cncr.29584
|
[7] |
M. Kordestani, M. Saif, M. E. Orchard, R. Razavi-Far, and K. Khorasani, “Failure prognosis and applications: A survey of recent literature,” IEEE Trans. Reliab., 2019, DOI: 10.1109/TR.2019.2930195.
|
[8] |
S. Park, B. H. Nam, H. R. Yang, J. A. Lee, H. Lim, J. T. Han, I. S. Park, H. R. Shin, and J. S. Lee, “Individualized risk prediction model for lung cancer in Korean men,” PLoS One, vol. 8, no. 2, Article No. e54823, Feb. 2013. doi: 10.1371/journal.pone.0054823
|
[9] |
N. Horeweg, J. van Rosmalen, M. A. Heuvelmans, C. M. van der Aalst, R. Vliegenthart, E. T. Scholten, K. ten Haaf, K. Nackaerts, J. W. J. Lammers, C. Weenink, H. J. Groen, P. van Ooijen, P. A. de Jong, G. H. de Bock, W. Mali, H. J. de Koning, and M. Oudkerk, “Lung cancer probability in patients with CT-detected pulmonary nodules: A prespecified analysis of data from the NELSON trial of low-dose CT screening,” Lancet Oncol., vol. 15, no. 12, pp. 1332–1341, Nov. 2014. doi: 10.1016/S1470-2045(14)70389-4
|
[10] |
N. Emaminejad, W. Qian, Y. B. Guan, M. Tan, Y. C. Qiu, H. Liu, and B. Zheng, “Fusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients,” IEEE Trans. Biomed. Eng., vol. 63, no. 5, pp. 1034–1043, May 2016. doi: 10.1109/TBME.2015.2477688
|
[11] |
P. B. Bach, M. W. Kattan, M. D. Thornquist, M. G. Kris, R. C. Tate, M. J. Barnett, L. J. Hsieh, and C. B. Begg, “Variations in lung cancer risk among smokers,” J. Natl. Cancer Inst., vol. 95, no. 6, pp. 470–478, Mar. 2003. doi: 10.1093/jnci/95.6.470
|
[12] |
M. R. Spitz, W. K. Hong, C. I. Amos, X. F. Wu, M. B. Schabath, Q. Dong, S. Shete, and C. J. Etzel, “A risk model for prediction of lung cancer,” J. Natl. Cancer Inst., vol. 99, no. 9, pp. 715–726, May 2007. doi: 10.1093/jnci/djk153
|
[13] |
K. A. Cronin, M. H. Gail, A. H. Zou, P. B. Bach, J. Virtamo, and D. Albanes, “Validation of a model of lung cancer risk prediction among smokers,” J. Natl. Cancer Inst., vol. 98, no. 9, pp. 637–640, May 2006. doi: 10.1093/jnci/djj163
|
[14] |
M. C. Tammemagi, S. C. Lam, A. M. McWilliams, and D. D. Sin, “Incremental value of pulmonary function and sputum DNA image cytometry in lung cancer risk prediction,” Cancer Prev. Res., vol. 4, no. 4, pp. 552–561, Apr. 2011. doi: 10.1158/1940-6207.CAPR-10-0183
|
[15] |
M. C. Tammemagi, H. A. Katki, W. G. Hocking, T. R. Church, N. Caporaso, P. A. Kvale, A. K. Chaturvedi, G. A. Silvestri, T. L. Riley, J. Commins, and C. D. Berg, “Selection criteria for lung-cancer screening,” N. Engl. J. Med., vol. 368, no. 8, pp. 728–736, Feb. 2013. doi: 10.1056/NEJMoa1211776
|
[16] |
C. Hoggart, P. Brennan, A. Tjonneland, U. Vogel, K. Overvad, J. N. Ostergaard, R. Kaaks, F. Canzian, H. Boeing, A. Steffen, A. Trichopoulou, C. Bamia, D. Trichopoulos, M. Johansson, D. Palli, V. Krogh, R. Tumino, C. Sacerdote, S. Panico, H. Boshuizen, H. B. Bueno-de-Mesquita, P. H. M. Peeters, E. Lund, I. T. Gram, T. Braaten, L. Rodriguez, A. Agudo, E. Sanchez-Cantalejo, L. Arriola, M. D. Chirlaque, A. Barricarte, T. Rasmuson, K. T. Khaw, N. Wareham, N. E. Allen, E. Riboli, and P. Vineis, “A risk model for lung cancer incidence,” Cancer Prev. Res., vol. 5, no. 6, pp. 834–846, Jun. 2012. doi: 10.1158/1940-6207.CAPR-11-0237
|
[17] |
G. R. Hart, D. A. Roffman, R. Decker, and J. Deng, “A multi-parameterized artificial neural network for lung cancer risk prediction,” PLoS One, vol. 13, no. 10, Article No. e0205264, Oct. 2018. doi: 10.1371/journal.pone.0205264
|
[18] |
C. J. Etzel, S. Kachroo, M. Liu, A. D’Amelio, Q. Dong, M. L. Cote, A. S. Wenzlaff, W. K. Hong, A. J. Greisinger, A. G. Schwartz, and M. R. Spitz, “Development and validation of a lung cancer risk prediction model for African-Americans,” Cancer Prev. Res., vol. 1, no. 4, pp. 255–265, Sep. 2008. doi: 10.1158/1940-6207.CAPR-08-0082
|
[19] |
A. Cassidy, J. P. Myles, M. van Tongeren, R. D. Page, T. Liloglou, S. W. Duffy, and J. K. Field, “The LLP risk model: An individual risk prediction model for lung cancer,” Br. J. Cancer, vol. 98, no. 2, pp. 270–276, Jan. 2008. doi: 10.1038/sj.bjc.6604158
|
[20] |
R. Longadge and S. Dongre, Class imbalance problem in data mining review. 2013. [Online]. Available: arXiv:1305.1707
|
[21] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Cambridge, MA, USA, 2014, pp. 2672–2680.
|
[22] |
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in Proc. 34th Int. Conf. Machine Learning, Sydney, NSW, Australia, 2017, pp. 214–223.
|
[23] |
K. Shmelkov, C. Schmid, and K. Alahari, “How good is my GAN?,” in Proc. European Conf. Computer Vision (ECCV), Munich, Germany, 2018, pp. 218–234.
|
[24] |
C. Doersch, Tutorial on variational autoencoders. 2016. [Online]. Available: arXiv:1606.05908
|
[25] |
D. P. Kingma and M. Welling, Auto-encoding variational bayes. 2013. [Online]. Available: arXiv:1312.6114
|
[26] |
W. Muhammad, G. R. Hart, B. Nartowt, J. J. Farrell, K. Johung, Y. Liang, and J. Deng, “Pancreatic cancer prediction through an artificial neural network,” Front. Artif. Intell., vol. 2, Article No. 2, May 2019. doi: 10.3389/frai.2019.00002
|
[27] |
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization. 2014. [Online]. Available: arXiv:1412.6980
|
[28] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.
|
[29] |
G. M. Weiss and F. Provost, “The effect of class distribution on classifier learning: An empirical study,” Technical Report ML-TR-44, 2001.
|
[30] |
G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 559–563, Jan. 2017.
|
[31] |
Y. Z. Liu, Z. Li, C. Zhou, Y. C. Jiang, J. S. Sun, M. Wang, and X. N. He, “Generative adversarial active learning for unsupervised outlier detection,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 8, pp. 1517–1528, Aug. 2020.
|
[32] |
W. C. Lin, C. F. Tsai, Y. H. Hu, and J. S. Jhang, “Clustering-based undersampling in class-imbalanced data,” Inform. Sci., vol. 409-410, pp. 17–26, Oct. 2017. doi: 10.1016/j.ins.2017.05.008
|
[33] |
Z. P. Che, Y. Cheng, S. F. Zhai, Z. N. Sun, and Y. Liu, “Boosting deep learning risk prediction with generative adversarial networks for electronic health records,” in Proc. 2017 IEEE Int. Conf. Data Mining (ICDM), New Orleans, LA, USA, 2017, pp. 787–792.
|
[34] |
J. Didkowska, U. Wojciechowska, M. Manzuk, and J. Lobaszewski, “Lung cancer epidemiology: Contemporary and future challenges worldwide,” Ann. Transl. Med., vol. 4, no. 8, Article No. 150, Apr. 2016. doi: 10.21037/atm.2016.03.11
|
[35] |
Q. J. Lu, S. X. Yao, C. Y. Huang, Y. J. Lan, S. Y. Cang, P. R. Taylor, Y. L. Qiao, and R. S. Wang, “A cohort study on the relationship between vegetable intake and risks of lung cancer in the Tin Corporation (YTC) miners in Yunnan,” Chin. J. Epidemiol., vol. 21, no. 3, pp. 205–207, Jun. 2000.
|
[36] |
G. Lippi, C. Mattiuzzi, and G. Cervellin, “Meat consumption and cancer risk: A critical review of published meta-analyses,” Crit. Rev. Oncol. Hematol., vol. 97, pp. 1–14, Jan. 2016. doi: 10.1016/j.critrevonc.2015.11.008
|
[37] |
M. Shen, R. S. Chapman, X. Z. He, L. Z. Liu, H. Lai, W. Chen, and Q. Lan, “Dietary factors, food contamination and lung cancer risk in Xuanwei, China,” Lung Cancer, vol. 61, no. 3, pp. 275–282, Sep. 2008. doi: 10.1016/j.lungcan.2007.12.024
|
[38] |
H. Y. Yu, Q. P. Xu, W. M. Xiong, Z. Q. Liu, L. Cai, and F. He, “Association of pickled food, fired food and smoked food combined with smoking and alcohol drinking with lung cancer: A case-control study,” J. Hyg. Res., vol. 48, no. 6, pp. 925–931, Nov. 2019.
|
[39] |
J. Jeon, T. R. Holford, D. T. Levy, E. J. Feuer, P. Cao, J. Tam, L. Clarke, J. Clarke, C. Y. Kong, and R. Meza, “Smoking and lung cancer mortality in the United States from 2015 to 2065: A comparative modeling approach,” Ann. Intern. Med., vol. 169, no. 10, pp. 684–693, Nov. 2018. doi: 10.7326/M18-1250
|
[40] |
X. N. Zou, M. M. Jia, X. Wang, and X. Y. Zhi, “Changing epidemic of lung cancer & tobacco and situation of tobacco control in China,” Chin. J. Lung Cancer, vol. 20, no. 8, pp. 505–510, Aug. 2017.
|
[41] |
G. R. Husebo, R. Nielsen, J. Hardie, P. S. Bakke, L. Lerner, C. D’Alessandro-Gabazza, J. Gyuris, E. Gabazza, P. Aukrust, and T. Eagan, “Risk factors for lung cancer in COPD-results from the Bergen COPD cohort study,” Respirat. Med., vol. 152, pp. 81–88, Jun. 2019. doi: 10.1016/j.rmed.2019.04.019
|