IEEE/CAA Journal of Automatica Sinica
Citation: | X. X. Ren, D. W. Li, Y. G. Xi, and H. B. Shao, "Distributed Subgradient Algorithm for Multi-Agent Optimization With Dynamic Stepsize," IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1451-1464, Aug. 2021. doi: 10.1109/JAS.2021.1003904 |
[1] |
P. Yi, Y. Hong and F. Liu, “Distributed gradient algorithm for constrained optimization with application to load sharing in power systems,” Systems &Control Letters, vol. 83, pp. 45–52, 2015.
|
[2] |
S. Nabavi, J. Zhang, and A. Chakrabortty, “Distributed optimization algorithms for wide-area oscillation monitoring in power systems using interregional pmu-pdc architectures,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2529–2538, 2015. doi: 10.1109/TSG.2015.2406578
|
[3] |
P. Braun, L. Grune, C. M. Kellett, S. R. Weller, and K. Worthmann, “A distributed optimization algorithm for the predictive control of smart grids,” IEEE Trans. Automatic Control, vol. 61, no. 12, pp. 3898–3911, 2016. doi: 10.1109/TAC.2016.2525808
|
[4] |
J. Lavaei, S. H. Low, R. Baldick, B. Zhang, D. K. Molzahn, F. Dorfler, and H. Sandberg, “Guest editorial distributed control and efficient optimization methods for smart grid,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2939–2940, 2017. doi: 10.1109/TSG.2017.2758907
|
[5] |
S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed compressed sensing for static and time-varying networks,” IEEE Trans. Signal Processing, vol. 62, no. 19, pp. 4931–4946, 2014. doi: 10.1109/TSP.2014.2340812
|
[6] |
G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear regression,” IEEE Trans. Signal Processing, vol. 58, no. 10, pp. 5262–5276, 2010. doi: 10.1109/TSP.2010.2055862
|
[7] |
C. Mu and Y. Zhang, “Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 1, pp. 259–273, 2019.
|
[8] |
P. Richtárik and M. Takáč, “Distributed coordinate descent method for learning with big data,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2657–2681, 2016.
|
[9] |
C. Sun and C. Mu, “Important scientific problems of multi-agent deep reinforcement learning,” Acta Automatica Sinica, vol. 46, no. 7, pp. 1301–1312, 2020.
|
[10] |
A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multiagent optimization,” IEEE Trans. Automatic Control, vol. 54, no. 1, pp. 48–61, 2009. doi: 10.1109/TAC.2008.2009515
|
[11] |
A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Automatic Control, vol. 55, no. 4, pp. 922–938, 2010. doi: 10.1109/TAC.2010.2041686
|
[12] |
J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed optimization: Convergence analysis and network scaling,” IEEE Trans. Automatic Control, vol. 57, no. 3, pp. 592–606, 2012.
|
[13] |
D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed gradient methods,” IEEE Trans. Automatic Control, vol. 59, no. 5, pp. 1131–1146, 2014. doi: 10.1109/TAC.2014.2298712
|
[14] |
A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying graphs,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017. doi: 10.1137/16M1084316
|
[15] |
K. Seaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal algorithms for smooth and strongly convex distributed optimization in networks, ” in Proc. 34th Int. Conf. on Machine Learning, vol. 70, pp. 3027–3036, 2017.
|
[16] |
W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2015. doi: 10.1137/14096668X
|
[17] |
C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear convergence in optimization over directed graphs with row-stochastic matrices,” IEEE Trans. Automatic Control, vol. 63, no. 10, pp. 3558–3565, 2018. doi: 10.1109/TAC.2018.2797164
|
[18] |
F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over time-varying directed graphs with row and columnstochastic matrices, ” IEEE Trans. Automatic Control, 2020, DOI: 10.1109/TAC.2020.2969721.
|
[19] |
A. Nedic, “Asynchronous broadcast-based convex optimization over a network,” IEEE Trans. Automatic Control, vol. 56, no. 6, pp. 1337–1351, 2011. doi: 10.1109/TAC.2010.2079650
|
[20] |
S. Lee and A. Nedić, “Asynchronous gossip-based random projection algorithms over networks,” IEEE Trans. Automatic Control, vol. 61, no. 4, pp. 953–968, 2016. doi: 10.1109/TAC.2015.2460051
|
[21] |
J. Lei, H. F. Chen, and H. T. Fang, “Asymptotic properties of primaldual algorithm for distributed stochastic optimization over random networks with imperfect communications,” SIAM Journal on Control and Optimization, vol. 56, no. 3, pp. 2159–2188, 2018. doi: 10.1137/16M1086133
|
[22] |
A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Automatic Control, vol. 60, no. 3, pp. 601–615, 2015. doi: 10.1109/TAC.2014.2364096
|
[23] |
P. Wang, P. Lin, W. Ren, and Y. Song, “Distributed subgradientbased multiagent optimization with more general step sizes,” IEEE Trans. Automatic Control, vol. 63, no. 7, pp. 2295–2302, 2018. doi: 10.1109/TAC.2017.2763782
|
[24] |
K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016. doi: 10.1137/130943170
|
[25] |
B. T. Polyak, Introduction to Optimization. New York, USA: Optimization Software, Inc., 1987.
|
[26] |
S. Boyd, “Subgradient methods. Lecture notes of EE364b, ” Tech. Rep, Standford Univ., Stanford, CA, USA, 2013.
|
[27] |
R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis. Cambridge, UK: Cambridge University Press, 1990.
|
[28] |
S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Trans. on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006. doi: 10.1109/TIT.2006.874516
|