IEEE/CAA Journal of Automatica Sinica
Citation: | Zhixin Liu, Changjian Liang, Yazhou Yuan, Kit Yan Chan and Xinping Guan, "Resource Allocation Based on User Pairing and Subcarrier Matching for Downlink Non-Orthogonal Multiple Access Networks," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 679-689, Mar. 2021. doi: 10.1109/JAS.2021.1003886 |
[1] |
K. Yang, N. Yang, N. Ye, M. Jia, Z. Gao, and R. Fan, “Non-orthogonal multiple access: Achieving sustainable future radio access,” IEEE Communication Magazine, vol. 66, no. 2, pp. 116–121, 2019.
|
[2] |
Y. J. Liang, “Dynamic resource allocation in mobile heterogeneous cellular networks,” Wireless Networks, vol. 25, no. 4, pp. 1605–1617, 2019. doi: 10.1007/s11276-017-1617-8
|
[3] |
Y. Liu, H. Wang, M. Peng, J. Guan, and Y. Wang, “An incentive mechanism for privacy-preserving crowdsensing via deep reinforcement learning,” IEEE Internet of Things Journal, 2020, to be publishd. DOI: 10.1109/JIOT.2020.3047105
|
[4] |
S. Saadat, C. Da, and J. Tao, “QoS guaranteed resource allocation scheme for cognitive femtocells in LTE heterogeneous networks with universal frequency reuse,” Mobile Networks &Applications, vol. 21, no. 6, pp. 930–942, 2016.
|
[5] |
Y. Chen, “Resource allocation for downlink control channel in LTE systems,” in Proc. the 7th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1–4, 2011.
|
[6] |
M. Bourouha and U. Abdel-Qader, “Cross-layer design of a dynamic resource allocation control for 3GPP2 1xEV-DV systems,” in Proc. IEEE Electro/Information Technology Conference, pp. 246–260, 2008.
|
[7] |
Z. Liu, L. Gao, X. Guan, K. Ma, and Y. Wang, “Efficient QoS support for robust resource allocation in blockchain-based femtocell networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 7070–7080, 2020. doi: 10.1109/TII.2019.2939146
|
[8] |
Z. Liu, C. Liang, Y. Yuan, and X. Guan, “Energy efficient resource allocation based on relay selection and subcarrier pairing with channel uncertainty in cognitive radio network,” Computer Networks, vol. 161, pp. 82–92, 2019. doi: 10.1016/j.comnet.2019.05.021
|
[9] |
Z. Yang, C. Pan, H. Xu, J. Shi, and M. Chen, “Power control and resource allocation for multi-cell ofdm networks with load coupling,” IEEE Access, vol. 6, pp. 15969–15979, 2018. doi: 10.1109/ACCESS.2018.2816916
|
[10] |
Y. Liu, T. Feng, M. Peng, J. Guan, and Y. Wang, “DREAM: Online control mechanisms for data aggregation error minimization in privacy-preserving crowdsensing,” IEEE Trans. on Dependable and Secure Computing, 2020, to be publishd. DOI: 10.1109/TDSC.2020.3011679
|
[11] |
Y. Xie, Z. Liu, K. Y. Chan, and X. Guan, “Energy-spectral efficiency optimization in vehicular communications: joint clustering and pricing-based robust power control approach,” IEEE Trans. on Vehicular Technology, vol. 69, no. 11, pp. 13673–13685, 2020. doi: 10.1109/TVT.2020.3021478
|
[12] |
H. Li and X. Zhao, “Joint resource allocation for OFDM-based cognitive two-way multiple AF relays networks with imperfect spectrum sensing,” IEEE Trans. on Vehicular Technology, vol. 67, no. 7, pp. 6286–6300, 2018. doi: 10.1109/TVT.2018.2817216
|
[13] |
W. Hao, S. Yang, B. Ning, and W. Hao, “Optimal resource allocation for cooperative orthogonal frequency division multiplexing-based cognitive radio networks with imperfect spectrum sensing,” IET Communications, vol. 9, no. 4, pp. 548–557, 2015. doi: 10.1049/iet-com.2014.0605
|
[14] |
S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “PowerDomain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 721–742, 2017. doi: 10.1109/COMST.2016.2621116
|
[15] |
Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2181–2195, 2017. doi: 10.1109/JSAC.2017.2725519
|
[16] |
Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C. I, and H. V. Poor, “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017. doi: 10.1109/MCOM.2017.1500657CM
|
[17] |
Y. Wu, L. P. Qian, H. Mao, X. Yang, H. Zhou, and X. Shen, “Optimal power allocation and scheduling for non-orthogonal multiple access relay-assisted networks,” IEEE Transactions on Mobile Computing, vol. 17, no. 11, pp. 2591–2606, 2018. doi: 10.1109/TMC.2018.2812722
|
[18] |
B. Chen, Y. Chen, Y. Cao, N. Zhao, and Z. Ding, “A novel spectrum sharing scheme assisted by secondary NOMA relay,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 732–735, 2018. doi: 10.1109/LWC.2018.2817501
|
[19] |
Y. Sun, D. W. K. Ng, and R. Schober, “Resource allocation for MCNOMA systems with cognitive relaying,” in Proc. IEEE Globecom Workshops (GC Wkshps), pp. 1–7, 2017.
|
[20] |
Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. on Vehicular Technology, vol. 65, no. 8, pp. 6010–6023, 2014.
|
[21] |
Q. Sun, S. Han, C. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 405–408, 2015. doi: 10.1109/LWC.2015.2426709
|
[22] |
W. Liang, Z. Ding, Y. Li, and L. Song, “User pairing for downlink non-orthogonal multiple access networks using matching algorithm,” IEEE Trans. on Communications, vol. 65, no. 12, pp. 5319–5332, 2017. doi: 10.1109/TCOMM.2017.2744640
|
[23] |
S. Zhang, B. Di, L. Song, and Y. Li, “Sub-channel and power allocation for non-orthogonal multiple access relay networks with amplify-andforward protocol,” IEEE Trans. on Wireless Communications, vol. 16, no. 4, pp. 2249–2261, 2017. doi: 10.1109/TWC.2017.2661281
|
[24] |
X. Chong, Z. Qi, Q. Li, and J. Qin, “Joint power allocation and relay beamforming in non-orthogonal multiple access amplify-andforward relay networks,” IEEE Trans. on Vehicular Technology, vol. 66, no. 8, pp. 7558–7562, 2017. doi: 10.1109/TVT.2017.2657741
|
[25] |
X. Zhang and F. Wang, “Resource allocation for wireless power transmission over full-duplex ofdma/noma mobile wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 2, pp. 327–344, 2018.
|
[26] |
C. Y. Ho, C. Y. Leow, and Z. Ding, “Two-way relay assisted nonorthogonal multiple access,” Computer Communications, vol. 145, pp. 335–344, 2019. doi: 10.1016/j.comcom.2019.07.012
|
[27] |
H. W. Kuhn, “The Hungarian Method for The Assignment Problem,” Naval Research Logistics, vol. 52, no. 1, pp. 7–21, 2005. doi: 10.1002/nav.20053
|
[28] |
Z. Q. Al-Abbasi and D. K. C. So, “User-pairing based non-orthogonal multiple access (NOMA) system,” in Proc. IEEE the 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, 2016.
|
[29] |
Y. Otani, S. Ohno, K. D. Teo, and T. Hinamoto, “Subcarrier allocation for multi-user OFDM system,” in Proc. Asia-Pacific Conference on Communications, pp. 1073–1077, 2005.
|