IEEE/CAA Journal of Automatica Sinica
Citation: | Yicun Hua, Qiqi Liu, Kuangrong Hao and Yaochu Jin, "A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303-318, Feb. 2021. doi: 10.1109/JAS.2021.1003817 |
[1] |
A. M. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and Q. F. Zhang, “Multiobjective evolutionary algorithms: A survey of the state of the art,” Swarm Evolut. Comput., vol. 1, no. 1, pp. 32–49, Mar. 2011. doi: 10.1016/j.swevo.2011.03.001
|
[2] |
H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part Ⅱ: Handling constraints and extending to an adaptive approach,” IEEE Trans. Evolut. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014. doi: 10.1109/TEVC.2013.2281534
|
[3] |
D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. F. Zhang, “Objective reduction in many-objective optimization: Linear and nonlinear algorithms,” IEEE Trans. Evolut. Comput., vol. 17, no. 1, pp. 77–99, Feb. 2013. doi: 10.1109/TEVC.2012.2185847
|
[4] |
X. L. Ma, Y. Yu, X. D. Li, Y. T. Qi, and Z. X. Zhu, “A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms,” IEEE Trans. Evolut. Comput., vol. 24, no. 4, pp. 634–649, Aug. 2020. doi: 10.1109/TEVC.2020.2978158
|
[5] |
C. J. Zhang, K. C. Tan, L. H. Lee, and L. Gao, “Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts,” Soft Comput., vol. 22, no. 12, pp. 3997–4012, Jun. 2018. doi: 10.1007/s00500-017-2609-4
|
[6] |
H. Ishibuchi, H. Masuda, and Y. Nojima, “Pareto fronts of many-objective degenerate test problems,” IEEE Trans. Evolut. Comput., vol. 20, no. 5, pp. 807–813, Oct. 2016. doi: 10.1109/TEVC.2015.2505784
|
[7] |
Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evolut. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007. doi: 10.1109/TEVC.2007.892759
|
[8] |
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided evolutionary algorithm for many-objective optimization,” IEEE Trans. Evolut. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016. doi: 10.1109/TEVC.2016.2519378
|
[9] |
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ,” IEEE Trans. Evolut. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. doi: 10.1109/4235.996017
|
[10] |
J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based many-objective optimization,” Evolut. Comput., vol. 19, no. 1, pp. 45–76, Feb. 2011. doi: 10.1162/EVCO_a_00009
|
[11] |
E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective search, ” in Proc. Int. Conf. Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2004, pp. 832–842.
|
[12] |
L. Miguel Antonio and C. A. Coello Coello, “Coevolutionary multiobjective evolutionary algorithms: Survey of the state-of-the-art,” IEEE Trans. Evolut. Comput., vol. 22, no. 6, pp. 851–865, Dec. 2018. doi: 10.1109/TEVC.2017.2767023
|
[13] |
R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired co-evolutionary algorithms using weight vectors,” Eur. J. Oper. Res., vol. 243, no. 2, pp. 423–441, Jun. 2015. doi: 10.1016/j.ejor.2014.05.019
|
[14] |
Y. C. Hua, Y. Jin, and K. R. Hao, “A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts,” IEEE Trans. Cybernet., vol. 49, no. 7, pp. 2758–2770, Jul. 2019. doi: 10.1109/TCYB.2018.2834466
|
[15] |
H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes,” IEEE Trans. Evolut. Comput., vol. 21, no. 2, pp. 169–190, Apr. 2017. doi: 10.1109/TEVC.2016.2587749
|
[16] |
N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181, no. 3, pp. 1653–1669, Sept. 2007. doi: 10.1016/j.ejor.2006.08.008
|
[17] |
X. Y. Cai, Z. X. Yang, Z. Fan, and Q. F. Zhang, “Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization,” IEEE Trans. Cybernet., vol. 47, no. 9, pp. 2824–2837, Sept. 2017. doi: 10.1109/TCYB.2016.2586191
|
[18] |
L. Q. Pan, C. He, Y. Tian, Y. S. Su, and X. Y. Zhang, “A region division based diversity maintaining approach for many-objective optimization,” Int. Comput.-Aid. Eng., vol. 24, no. 3, pp. 279–296, Jun. 2017.
|
[19] |
Z. P. Liang, K. F. Hu, X. L. Ma, and Z. X. Zhu, “A many-objective evolutionary algorithm based on a two-round selection strategy,” IEEE Trans. Cybernet., pp. 1–13, 2019. DOI: 10.1109/TCYB.2019.2918087
|
[20] |
Z. K. Wang, Q. F. Zhang, H. Li, H. Ishibuchi, and L. C. Jiao, “On the use of two reference points in decomposition based multiobjective evolutionary algorithms,” Swarm Evolut. Comput., vol. 34, pp. 89–102, Jun. 2017. doi: 10.1016/j.swevo.2017.01.002
|
[21] |
Q. Z. Lin, S. B. Liu, K. C. Wong, M. G. Gong, C. A. C. Coello, J. Y. Chen, and J. Zhang, “A clustering-based evolutionary algorithm for many-objective optimization problems,” IEEE Trans. Evolut. Comput., vol. 23, no. 3, pp. 391–405, Jun. 2019. doi: 10.1109/TEVC.2018.2866927
|
[22] |
X. Y. Cai, Z. W. Mei, Z. Fan, and Q. F. Zhang, “A constrained decomposition approach with grids for evolutionary multiobjective optimization,” IEEE Trans. Evolut. Comput., vol. 22, no. 4, pp. 564–577, Aug. 2018. doi: 10.1109/TEVC.2017.2744674
|
[23] |
Q. Q. Fan and X. F. Yan, “Solving multimodal multiobjective problems through zoning search,” IEEE Trans. Syst. Man Cybernet.:Syst., pp. 1–12, 2019. DOI: 10.1109/TSMC.2019.2944338
|
[24] |
J. Liang, W. W. Xu, C. T. Yue, K. J. Yu, H. Song, O. D. Crisalle, and B. Y. Qu, “Multimodal multiobjective optimization with differential evolution,” Swarm Evolut. Comput., vol. 44, pp. 1028–1059, Feb. 2019. doi: 10.1016/j.swevo.2018.10.016
|
[25] |
Q. Z. Lin, W. Lin, Z. X. Zhu, M. G. Gong, J. Q. Li, and C. A. Coello Coello, “Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces,” IEEE Trans. Evolut. Comput., 2020. DOI: 10.1109/TEVC.2020.3008822
|
[26] |
Y. P. Liu, G. G. Yen, and D. W. Gong, “A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies,” IEEE Trans. Evolut. Comput., vol. 23, no. 4, pp. 660–674, Aug. 2019. doi: 10.1109/TEVC.2018.2879406
|
[27] |
A. Zhou, Q. Zhang, and Y. Jin, “Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm,” IEEE Trans. Evolut. Comput., vol. 13, no. 5, pp. 1167–1189, Oct. 2009. doi: 10.1109/TEVC.2009.2021467
|
[28] |
B. D. Li, J. L. Li, K. Tang, and X. Yao, “Many-objective evolutionary algorithms,” ACM Comput. Surv., vol. 48, no. 1, Article No. 13, Sep. 2015.
|
[29] |
I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems,” Siam J Optimizat., vol. 8, no. 3, pp. 631–657, Mar. 1998. doi: 10.1137/S1052623496307510
|
[30] |
X. Y. Cai, Z. W. Mei, and Z. Fan, “A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors,” IEEE Trans. Cybernet., vol. 48, no. 8, pp. 2335–2348, Aug. 2018. doi: 10.1109/TCYB.2017.2737554
|
[31] |
H. W. Ge, M. D. Zhao, L. Sun, Z. Wang, G. Z. Tan, Q. Zhang, and C. L. P. Chen, “A many-objective evolutionary algorithm with two interacting processes: Cascade clustering and reference point incremental learning,” IEEE Trans. Evolut. Comput., vol. 23, no. 4, pp. 572–586, Aug. 2019. doi: 10.1109/TEVC.2018.2874465
|
[32] |
K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evolut. Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014. doi: 10.1109/TEVC.2013.2281535
|
[33] |
Y. Tian, C. He, R. Cheng, and X. Y. Zhang, “A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization,” IEEE Trans. Syst. Man Cybernet.:Syst., pp. 1–15, 2019. DOI: 10.1109/TSMC.2019.2956288
|
[34] |
M. Q. Li, C. Grosan, S. X. Yang, X. H. Liu, and X. Yao, “Multiline distance minimization: A visualized many-objective test problem suite,” IEEE Trans. Evolut. Comput., vol. 22, no. 1, pp. 61–78, Feb. 2018. doi: 10.1109/TEVC.2017.2655451
|
[35] |
K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multiobjective optimization, ” in Evolutionary Multiobjective Optimization. London: Springer, 2005, pp. 105–145.
|
[36] |
H. Jain and K. Deb, “An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization, ” in Proc. Int. Conf. Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2013, pp. 307–321.
|
[37] |
R. Cheng, M. Q. Li, Y. Tian, X. Y. Zhang, S. X. Yang, Y. Jin, and X. Yao, “A benchmark test suite for evolutionary many-objective optimization,” Complex &Intelligent Systems, vol. 3, no. 1, pp. 67–81, Mar. 2017.
|
[38] |
S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Trans. Evolut. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006. doi: 10.1109/TEVC.2005.861417
|
[39] |
Y. T. Qi, X. L. Ma, F. Liu, L. C. Jiao, J. Y. Sun, and J. S. Wu, “MOEA/D with adaptive weight adjustment,” Evolut. Comput., vol. 22, no. 2, pp. 231–264, May 2014. doi: 10.1162/EVCO_a_00109
|
[40] |
H. Li, Q. F. Zhang, and J. D. Deng, “Multiobjective test problems with complicated Pareto fronts: Difficulties in degeneracy, ” in Proc. IEEE Congr. Evolutionary Computation, Beijing, China, 2014, pp. 2156–2163.
|
[41] |
R. Vlennet, C. Fonteix, and I. Marc, “Multicriteria optimization using a genetic algorithm for determining a Pareto set,” Int. J. Syst. Sci., vol. 27, no. 2, pp. 255–260, Feb. 1996. doi: 10.1080/00207729608929211
|
[42] |
F. Q. Gu and Y. M. Cheung, “Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm,” IEEE Trans. Evolut. Comput., vol. 22, no. 2, pp. 211–225, Apr. 2018. doi: 10.1109/TEVC.2017.2695579
|
[43] |
H. L. Liu, L. Chen, Q. F. Zhang, and K. Deb, “Adaptively allocating search effort in challenging many-objective optimization problems,” IEEE Trans. Evolut. Comput., vol. 22, no. 3, pp. 433–448, Jan. 2018. doi: 10.1109/TEVC.2017.2725902
|
[44] |
L. L. Zhen, M. Q. Li, R. Cheng, D. Z. Peng, and X. Yao, Multiobjective test problems with degenerate Pareto fronts. arXiv preprint arXiv: 1806.02706, 2018.
|
[45] |
H. Xu, W. H. Zeng, D. F. Zhang, and X. X. Zeng, “MOEA/HD: A multiobjective evolutionary algorithm based on hierarchical decomposition,” IEEE Trans. Cybernet., vol. 49, no. 2, pp. 517–526, Feb. 2019. doi: 10.1109/TCYB.2017.2779450
|
[46] |
R. Wang, Q. F. Zhang, and T. Zhang, “Decomposition-based algorithms using Pareto adaptive scalarizing methods,” IEEE Trans. Evolut. Comput., vol. 20, no. 6, pp. 821–837, Dec. 2016. doi: 10.1109/TEVC.2016.2521175
|
[47] |
Q. F. Zhang, A. M. Zhou, S. Z. Zhao, P. N. Suganthan, W. D. Liu, and S. Tiwari, “Multiobjective optimization test instances for the CEC 2009 special session and competition, ” Technical Report CES–487, 2008.
|
[48] |
F. Q. Gu and H. L. Liu, “A novel weight design in multi-objective evolutionary algorithm, ” in Proc. Int. Conf. Computational Intelligence and Security, Nanning, China, 2010, pp. 137–141.
|
[49] |
F. Q. Gu, H. L. Liu, and K. C. Tan, “A multiobjective evolutionary algorithm using dynamic weight design method,” Int. J. Innovative Computing,Information and Control, vol. 8, no. 5, pp. 3677–3688, May 2012.
|
[50] |
H. L. Liu, F. Q. Gu, and Y. M. Cheung, “T-MOEA/D: MOEA/D with objective transform in multi-objective problems, ” in Proc. Int. Conf. Information Science and Management Engineering, Xi’an, China, 2010, pp. 282–285.
|
[51] |
C. K. Chi and S. Y. Yue, “A multiobjective evolutionary algorithm that diversifies population by its density,” IEEE Trans. Evolut. Comput., vol. 16, no. 2, pp. 149–172, Apr. 2012. doi: 10.1109/TEVC.2010.2098411
|
[52] |
H. L. Liu, F. Q. Gu, and Q. F. Zhang, “Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems,” IEEE Trans. Evolut. Comput., vol. 18, no. 3, pp. 450–455, Jun. 2014. doi: 10.1109/TEVC.2013.2281533
|
[53] |
K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evolutionary optimization, ” in Proc. Int. Conf. Evolutionary Multi-criterion Optimization. Berlin, Heidelberg: Springer, 2001, pp. 284–298.
|
[54] |
S. Y. Jiang and S. X. Yang, “An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts,” IEEE Trans. Cybernet., vol. 46, no. 2, pp. 421–437, Feb. 2016. doi: 10.1109/TCYB.2015.2403131
|
[55] |
D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations, ” Ph.D. dissertation, Air Force Institute of Technology, ENC Wright Patterson AFB, OH, United States, 1999.
|
[56] |
E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evolut. Comput., vol. 8, no. 2, pp. 173–195, Feb. 2000. doi: 10.1162/106365600568202
|
[57] |
Y. Jin, “Effectiveness of weighted aggregation of objectivesfor evolutionary multiobjective optimization: Methods, analysis and applications,” 2002, [Online]. Available: http://www.softcomputing.de/edwa2002.pdf.
|
[58] |
G. Yu, T. Y. Chai, and X. C. Luo, “Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing,” IEEE Trans. Evolut. Comput., vol. 15, no. 4, pp. 487–514, Aug. 2011. doi: 10.1109/TEVC.2010.2073472
|
[59] |
H. Li and D. Landa-Silva, “An adaptive evolutionary multi-objective approach based on simulated annealing,” Evolut. Comput., vol. 19, no. 4, pp. 561–595, Nov. 2011. doi: 10.1162/EVCO_a_00038
|
[60] |
Q. Xu, Z. Q. Xu, and T. Ma, “A survey of multiobjective evolutionary algorithms based on decomposition: Variants, challenges and future directions,” IEEE Access, vol. 8, pp. 41588–41614, Feb. 2020. doi: 10.1109/ACCESS.2020.2973670
|
[61] |
M. Q. Li, S. X. Yang, and X. H. Liu, “Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization,” IEEE Trans. Evolut. Comput., vol. 20, no. 5, pp. 645–665, Oct. 2016. doi: 10.1109/TEVC.2015.2504730
|
[62] |
H. Li, J. D. Deng, Q. F. Zhang, and J. Y. Sun, “Adaptive epsilon dominance in decomposition-based multiobjective evolutionary algorithm,” Swarm Evolut. Comput., vol. 45, pp. 52–67, Mar. 2019. doi: 10.1016/j.swevo.2018.12.007
|
[63] |
C. Liu, Q. Zhao, B. Yan, S. Elsayed, T. Ray, and R. Sarker, “Adaptive sorting-based evolutionary algorithm for many-objective optimization,” IEEE Trans. Evolut. Comput., vol. 23, no. 2, pp. 247–257, Apr. 2019. doi: 10.1109/TEVC.2018.2848254
|
[64] |
Y. R. Zhou, Y. Xiang, Z. F. Chen, J. He, and J. H. Wang, “A scalar projection and angle-based evolutionary algorithm for many-objective optimization problems,” IEEE Trans. Cybernet., vol. 49, no. 6, pp. 2073–2084, Jun. 2019. doi: 10.1109/TCYB.2018.2819360
|
[65] |
M. Y. Wu, K. Li, S. Kwong, and Q. F. Zhang, “Evolutionary many-objective optimization based on adversarial decomposition,” IEEE Trans. Cybernet., vol. 50, no. 2, pp. 753–764, Feb. 2020. doi: 10.1109/TCYB.2018.2872803
|
[66] |
K. S. Bhattacharjee, H. K. Singh, T. Ray, and Q. F. Zhang, “Decomposition based evolutionary algorithm with a dual set of reference vectors, ” in Proc. IEEE Congr. Evolutionary Computation, San Sebastian, Spain, 2017, pp. 105–112.
|
[67] |
R. Cheng, Y. Jin, and K. Narukawa, “Adaptive reference vector generation for inverse model based evolutionary multiobjective optimization with degenerate and disconnected Pareto fronts, ” in Proc. Int. Conf. Evolutionary Multi-Criterion Optimization. Guimarães, Portugal: Springer, 2015, pp. 127–140.
|
[68] |
X. Y. He, Y. R. Zhou, and Z. F. Chen, “An evolution path-based reproduction operator for many-objective optimization,” IEEE Trans. Evolut. Comput., vol. 23, no. 1, pp. 29–43, Feb. 2019. doi: 10.1109/TEVC.2017.2785224
|
[69] |
Y. H. Zhang, Y. J. Gong, T. L. Gu, H. Q. Yuan, W. Zhang, S. Kwong, and J. Zhang, “DECAL: Decomposition-based coevolutionary algorithm for many-objective optimization,” IEEE Trans. Cybernet., vol. 49, no. 1, pp. 27–41, Jan. 2019. doi: 10.1109/TCYB.2017.2762701
|
[70] |
S. Y. Jiang, S. X. Yang, Y. Wang, and X. B. Liu, “Scalarizing functions in decomposition-based multiobjective evolutionary algorithms,” IEEE Trans. Evolut. Comput., vol. 22, no. 2, pp. 296–313, Apr. 2018. doi: 10.1109/TEVC.2017.2707980
|
[71] |
R. Wang, Z. B. Zhou, H. Ishibuchi, T. J. Liao, and T. Zhang, “Localized weighted sum method for many-objective optimization,” IEEE Trans. Evolut. Comput., vol. 22, no. 1, pp. 3–18, Feb. 2018. doi: 10.1109/TEVC.2016.2611642
|
[72] |
R. Wang, T. Zhang, and B. Guo, “An enhanced MOEA/D using uniform directions and a pre-organization procedure, ” in Proc. IEEE Congr. Evolutionary Computation, Cancun, Mexico, 2013, pp. 2390–2397.
|
[73] |
S. W. Jiang, L. Feng, D. Z. Yang, C. K. Heng, Y. S. Ong, A. N. Zhang, P. S. Tan, and Z. H. Cai, “Towards adaptive weight vectors for multiobjective evolutionary algorithm based on decomposition, ” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, BC, Canada, 2016, pp. 500–507.
|
[74] |
M. Q. Li and X. Yao, “What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation” Evolut. Comput., vol. 28, no. 2, pp. 227–253, Jun. 2020. doi: 10.1162/evco_a_00269
|
[75] |
L. R. C. de Farias, P. H. M. Braga, H. F. Bassani, and A. F. Araújo, “MOEA/D with uniformly randomly adaptive weights, ” in Proc. GECCO’18: Genetic and Evolutionary Computation Conf., Kyoto, Japan, 2018, pp. 641–648.
|
[76] |
Y. Y. Lin, H. Liu, and Q. Y. Jiang, “Dynamic reference vectors and biased crossover use for inverse model based evolutionary multi-objective optimization with irregular Pareto fronts,” Appl. Intell., vol. 48, no. 9, pp. 3116–3142, Sep. 2018. doi: 10.1007/s10489-017-1133-7
|
[77] |
C. Zhou, G. M. Dai, C. J. Zhang, X. P. Li, and K. Ma, “Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems,” Inform. Sci., vol. 465, pp. 232–247, Oct. 2018. doi: 10.1016/j.ins.2018.07.012
|
[78] |
A. R. Sánchez, A. Ponsich, and A. L. Jaimes, “Generation techniques and a novel on-line adaptation strategy for weight vectors within decomposition-based MOEAs, ” in Proc. Genetic and Evolutionary Computation Conf. Companion, Prague, Czech Republic, 2019, pp. 229–230.
|
[79] |
Y. P. Liu, D. W. Gong, J. Sun, and Y. Jin, “A many-objective evolutionary algorithm using a one-by-one selection strategy,” IEEE Trans. Cybernet., vol. 47, no. 9, pp. 2689–2702, Sep. 2017. doi: 10.1109/TCYB.2016.2638902
|
[80] |
X. Yi, Y. R. Zhou, M. Q. Li, and Z. F. Chen, “A vector angle-based evolutionary algorithm for unconstrained many-objective optimization,” IEEE Trans. Evolut. Comput., vol. 21, no. 1, pp. 131–152, Feb. 2017. doi: 10.1109/TEVC.2016.2587808
|
[81] |
Y. C. Hua, Y. Jin, K. R. Hao, and Y. Cao, “Generating multiple reference vectors for a class of many-objective optimization problems with degenerate Pareto fronts,” Comp. Intell. Syst., vol. 6, pp. 275–285, Jul. 2020. doi: 10.1007/s40747-020-00136-5
|
[82] |
S. W. Jiang, J. Zhang, and Y. S. Ong, “Asymmetric Pareto-adaptive scheme for multiobjective optimization, ” in Proc. Australasian Joint Conf. Artificial Intelligence. Berlin, Heidelberg: Springer, 2011, pp. 351–360.
|
[83] |
M. Asafuddoula, H. K. Singh, and T. Ray, “An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors,” IEEE Trans. Cybernet., vol. 48, no. 8, pp. 2321–2334, Aug. 2018. doi: 10.1109/TCYB.2017.2737519
|
[84] |
Q. Q. Liu, Y. Jin, M. Heiderich, and T. Rodemann, “Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular Pareto fronts, ” in Proc. IEEE Congr. Evolutionary Computation, Wellington, New Zealand, 2019, pp. 1726–1733.
|
[85] |
I. Giagkiozis, R. C. Purshouse, and P. J. Fleming, “Towards understanding the cost of adaptation in decomposition-based optimization algorithms, ” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Manchester, UK, 2013, pp. 615–620.
|
[86] |
S. Liu, Q. Lin, K.-C. Wong, C. C. A. Coello, J. Li, Z. Ming, and J. Zhang, “A self-guided reference vector strategy for many-objective optimization,” IEEE Trans. Cybernetics, pp. 1–15, 2020. DOI: 10.1109/TCYB.2020.2971638
|
[87] |
C. Y. Zhu, X. Y. Cai, Z. Fan, and M. Sulaman, “A two-phase many-objective evolutionary algorithm with penalty based adjustment for reference lines, ” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, BC, Canada, 2016, pp. 2161–2168.
|
[88] |
A. Camacho, G. Toscano, R. Landa, and H. Ishibuchi, “Indicator-based weight adaptation for solving many-objective optimization problems, ” in Proc. Int. Conf. Evolutionary Multi-Criterion Optimization. East Lansing, MI, USA: Springer, 2019, pp. 216–228.
|
[89] |
Q. S. Zhang, W. Zhu, B. Liao, X. T. Chen, and L. J. Cai, “A modified PBI approach for multi-objective optimization with complex Pareto fronts,” Swarm Evolut. Comput., vol. 40, pp. 216–237, Jun. 2018. doi: 10.1016/j.swevo.2018.02.001
|
[90] |
Y. P. Liu, H. Ishibuchi, N. Masuyama, and Y. Nojima, “Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts,” IEEE Trans. Evolut. Comput., vol. 24, no. 3, pp. 439–453, Jun. 2020.
|
[91] |
Q. Q. Liu, Y. Jin, M. Heiderich, T. Rodemann, and G. Yu, “An adaptive reference vector-guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems,” IEEE Trans. Cybernet., pp. 1–14, 2020. DOI: 10.1109/TCYB.2020.3020630
|
[92] |
K. Harada, S. Hiwa, and T. Hiroyasu, “Adaptive weight vector assignment method for MOEA/D, ” in Proc. IEEE Symp. Series on Computational Intelligence, Honolulu, HI, USA, 2017, pp. 1–9.
|
[93] |
M. Y. Wu, S. Kwong, Y. H. Jia, K. Li, and Q. F. Zhang, “Adaptive weights generation for decomposition-based multi-objective optimization using Gaussian process regression, ” in Proc. Genetic and Evolutionary Computation Conf., Berlin, Germany, 2017, pp. 641–648.
|
[94] |
M. Y. Wu, K. Li, S. Kwong, Q. F. Zhang, and J. Zhang, “Learning to decompose: A paradigm for decomposition-based multiobjective optimization,” IEEE Trans. Evolut. Comput., vol. 23, no. 3, pp. 376–390, Jun. 2019. doi: 10.1109/TEVC.2018.2865931
|
[95] |
L. J. He, Y. Nan, K. Shang, and H. Ishibuchi, “A study of the naïve objective space normalization method in MOEA/D, ” in Proc. IEEE Symp. Series on Computational Intelligence, Xiamen, China, 2019, pp. 1834–1840.
|
[96] |
Y. Tian, H. D. Wang, X. Y. Zhang, and Y. Jin, “Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization,” Comp. Intell. Syst., vol. 3, no. 4, pp. 247–263, Dec. 2017. doi: 10.1007/s40747-017-0057-5
|
[97] |
Y. Tian, R. Cheng, X. Y. Zhang, F. Cheng, and Y. Jin, “An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility,” IEEE Trans. Evolut. Comput., vol. 22, no. 4, pp. 609–622, Aug. 2018. doi: 10.1109/TEVC.2017.2749619
|
[98] |
S. Y. Jiang, H. R. Li, J. L. Guo, M. J. Zhong, S. X. Yang, M. Kaiser, and N. Krasnogor, “AREA: An adaptive reference-set based evolutionary algorithm for multiobjective optimisation,” Inform. Sci., vol. 515, pp. 365–387, Apr. 2020. doi: 10.1016/j.ins.2019.12.011
|
[99] |
Y. P. Liu, D. W. Gong, X. Y. Sun, and Y. Zhang, “Many-objective evolutionary optimization based on reference points,” Appl. Soft Comput., vol. 50, pp. 344–355, Jan. 2017. doi: 10.1016/j.asoc.2016.11.009
|
[100] |
W. Q. Feng and D. W. Gong, “Multi-objective evolutionary optimization with objective space partition based on online perception of Pareto front,” Acta Autom. Sinica, vol. 46, no. 8, pp. 1628–1643, Sep. 2020.
|
[101] |
H. Zhang, S. M. Song, A. M. Zhou, and X. Z. Gao, “A clustering based multiobjective evolutionary algorithm, ” in Proc. IEEE Congr. Evolutionary Computation, Beijing, China, 2014, pp. 723–730.
|
[102] |
S. S. Das, M. M. Islam, and N. A. Arafat, “Evolutionary algorithm using adaptive fuzzy dominance and reference point for many-objective optimization,” Swarm Evolut. Comput., vol. 44, pp. 1092–1107, Feb. 2019. doi: 10.1016/j.swevo.2018.11.003
|
[103] |
R. Denysiuk, L. Costa, and I. E. Santo, “Clustering-based selection for evolutionary many-objective optimization, ” in Proc. Int. Conf. Parallel Problem Solving from Nature. Ljubljana, Slovenia: Springer, 2014, pp. 538–547.
|
[104] |
C. He, L. H. Li, Y. Tian, X. Y. Zhang, R. Cheng, Y. Jin, and X. Yao, “Accelerating large-scale multiobjective optimization via problem reformulation,” IEEE Trans. Evolut. Comput., vol. 23, no. 6, pp. 949–961, 2019. doi: 10.1109/TEVC.2019.2896002
|
[105] |
Z. Yang, Y. Jin, and K. R. Hao, “A bio-inspired self-learning coevolutionary dynamic multiobjective optimization algorithm for internet of things services,” IEEE Trans. Evolut. Comput., vol. 23, no. 4, pp. 675–688, Aug. 2019. doi: 10.1109/TEVC.2018.2880458
|
[106] |
Y. Jin, H. D. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-driven evolutionary optimization: An overview and case studies,” IEEE Trans. Evolut. Comput., vol. 23, no. 3, pp. 442–458, Jun. 2019. doi: 10.1109/TEVC.2018.2869001
|
[107] |
T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms,” Soft Comput., vol. 23, no. 9, pp. 3137–3166, May 2019. doi: 10.1007/s00500-017-2965-0
|
[108] |
C. He, S. H. Huang, R. Cheng, K. C. Tan, and Y. Jin, “Evolutionary multiobjective optimization driven by generative adversarial networks (GANs),” IEEE Trans. Cybernet., pp. 1–14, 2020. DOI: 10.1109/TCYB.2020.2985081
|
[109] |
X. Y. Sun, D. W. Gong, Y. Jin, and S. S. Chen, “A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning,” IEEE Trans. Cybernet., vol. 43, no. 2, pp. 685–698, Apr. 2013. doi: 10.1109/TSMCB.2012.2214382
|
[110] |
X. J. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 3, no. 1, pp. 1–130, 2009.
|
[111] |
Q. Yang, Y. Zhang, W. Y. Dai, and S. J. Pan, Transfer Learning. Cambridge: Cambridge University Press, 2020.
|
JAS-2020-0976-supp.pdf |