IEEE/CAA Journal of Automatica Sinica
Citation: | G. W. Dong, L. Cao, D. Y. Yao, H. Y. Li, and R. Q. Lu, "Adaptive Attitude Control for Multi-MUAV Systems With Output Dead-Zone and Actuator Fault," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1567-1575, Sep. 2021. doi: 10.1109/JAS.2020.1003605 |
[1] |
C. Peng, C. C. Zhao, X. G. Gong, G. Y. Qiao, Y. Bai, D. F. Xu, Q. J. Gao, and Y. T. Tian, “Variable structure and variable coefficient proportionalintegral-derivative control to prevent actuator saturation of yaw movement for a coaxial eight-rotor unmanned aerial vehicle,” Proc IMechE,Part G:J. Aerospace Engineering, vol. 229, pp. 1661–1674, Oct. 2015. doi: 10.1177/0954410014558319
|
[2] |
C. Y. Fu, W. Hong, H. Q. Lu, L. Zhang, X. J. Guo, and Y. T. Tian, “Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints,” Aerosp. Sci. Technol., vol. 78, pp. 593–603, May 2018. doi: 10.1016/j.ast.2018.05.021
|
[3] |
M. H. Zhang and X. J. Jing, “A bioinspired dynamics-based adaptive fuzzy smc method for half-car active suspension systems with input dead zones and saturations,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1743–1755, Apr. 2021.
|
[4] |
H. W. Lin, B. Zhao, D. R. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
|
[5] |
P. H. Du, Y. N. Pan, H. Y. Li, and H.-K. Lam, “Nonsingular finite-time eventtriggered fuzzy control for large-scale nonlinear systems,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.2992632.
|
[6] |
L. H. Kong, W. He, C. G. Yang, and C. Y. Sun, “Robust neurooptimal control for a robot via adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2020.3006850.
|
[7] |
X. M. Zhao, H. Mo, K. F. Yan, and L. X. Li, “Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 178–186, Jan. 2020.
|
[8] |
D. R. Liu, D. Wang, D. B. Zhao, Q. L. Wei, and N. Jin, “Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 628–634, Jul. 2012. doi: 10.1109/TASE.2012.2198057
|
[9] |
H. Ma, H. Y. Li, R. Q. Lu, and T. W. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci China Inf Sci, vol. 63, no. 5, pp. 157–171, May 2020. doi: 10.1007/s11432-019-2680-1
|
[10] |
Y. M. Li and S. C. Tong, “Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1153–1163, Jun. 2018. doi: 10.1109/TFUZZ.2017.2710950
|
[11] |
Z. G. Zeng and J. Wang, “Improved conditions for global exponential stability of recurrent neural networks with time-varying delays,” IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 623–635, May 2006. doi: 10.1109/TNN.2006.873283
|
[12] |
S. C. Tong, Y. M. Li, and Y. J. Liu, “Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1575–1585, Apr. 2021. doi: 10.1109/TNNLS.2020.2985417
|
[13] |
W. B. Xiao, L. Cao, H.Y. Li, and R. Lu, “Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay,” Sci China Inf Sci, vol. 63, no. 3, Article No. 132202, Mar. 2020. doi: 10.1007/s11432-019-2678-2
|
[14] |
W. C. Zou, P. Shi, Z. R. Xiang, and Y. Shi, “Finite-time consensus of secondorder switched nonlinear multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1757–1762, May 2020. doi: 10.1109/TNNLS.2019.2920880
|
[15] |
C. G. Yang, D. Y. Huang, W. He, and L. Cheng, “Neural control of robot manipulators with trajectory tracking constraints and input saturation,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2020.3017202.
|
[16] |
Y. M. Li, K.W. Li, and S. C. Tong, “Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 1, pp. 96–110, Jan. 2019. doi: 10.1109/TFUZZ.2018.2868898
|
[17] |
A. K. Jain and S. Bhasin, “Tracking control of uncertain nonlinear systems with unknown constant input delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420–425, Mar. 2020. doi: 10.1109/JAS.2019.1911807
|
[18] |
Y. N. Pan, P. H. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.2999746.
|
[19] |
Z. T. Li, L. X. Gao, W. H. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, Jan. 2020. doi: 10.1109/JAS.2019.1911858
|
[20] |
H. J. Liang, G. L. Liu, H. W. Zhang, and T. W. Huang, “Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2239–2250, May 2021. doi: 10.1109/TNNLS.2020.3003950
|
[21] |
Y. Yang and D. Yue, “Distributed tracking control of a class of multi-agent systems in non-affine pure-feedback form under a directed topology,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 169–180, Jan. 2018. doi: 10.1109/JAS.2017.7510382
|
[22] |
B. Zhao and D. R. Liu, “Event-triggered decentralized tracking control of modular reconfigurable robots through adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3054–3064, Apr. 2020. doi: 10.1109/TIE.2019.2914571
|
[23] |
H. M. Guzey, T. Dierks, S. Jagannathan, and L. Acar, “Modified consensus-based output feedback control of quadrotor UAV formations using neural networks,” J. Intell. Robot. Syst., vol. 94, pp. 283–300, 2019. doi: 10.1007/s10846-018-0961-y
|
[24] |
X. W. Dong, Y. F. Li, C. Lu, G. Q. Hu, Q. D. Li, and Z. Ren, “Time-varying formation tracking for UAV swarm systems with switching directed topologies,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3674–3685, Dec. 2019. doi: 10.1109/TNNLS.2018.2873063
|
[25] |
X. H. Wang, V. Yadav, and S. N. Blakrishnan, “Cooperative UAV formation flying with obstacle/collision avoidance,” IEEE Trans. Contr. Syst. Technol., vol. 15, no. 4, pp. 672–679, Jul. 2007. doi: 10.1109/TCST.2007.899191
|
[26] |
Z. G. Zeng and J. Wang, “Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks,” IEEE Trans. Syst.,Man,Cybern. B,Cybern., vol. 38, no. 6, pp. 1525–1536, Dec. 2008. doi: 10.1109/TSMCB.2008.927717
|
[27] |
Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, and C. W. Wu, “Adaptive neural network tracking control for robotic manipulators with dead zone,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3611–3620, Dec. 2019. doi: 10.1109/TNNLS.2018.2869375
|
[28] |
S. C. Tong, S. Sui, and Y. M. Li, “Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone,” IEEE Trans. Cybern., vol. 45, no. 12, pp. 2816–2826, Dec. 2015. doi: 10.1109/TCYB.2014.2386912
|
[29] |
T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 44, no. 7, pp. 1895–1903, Jul. 2008. doi: 10.1016/j.automatica.2007.11.025
|
[30] |
Q. K. Shen and P. Shi, “Output consensus control of multiagent systems with unknown nonlinear dead zone,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 10, pp. 1329–1337, Oct. 2016. doi: 10.1109/TSMC.2015.2503380
|
[31] |
X. L. Hu and J. Wang, “Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1487–1499, Nov. 2006. doi: 10.1109/TNN.2006.879774
|
[32] |
W. C. Zou, P. Shi, Z. R. Xiang, and Y. Shi, “Consensus tracking control of switched stochastic nonlinear multiagent systems via event-triggered strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1036–1045, Mar. 2020. doi: 10.1109/TNNLS.2019.2917137
|
[33] |
Q. Zhou, G. D. Chen, R. Q. Lu, and W. W. Bai, “Disturbance-observer-based event-triggered control for multi-agent systems with input saturation,” Sci. Sinica Inform, vol. 49, no. 11, pp. 1502–1516, Nov. 2019. doi: 10.1360/SSI-2019-0105
|
[34] |
M. Chen and S. S. Ge, “Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer,” IEEE Trans. Cybern., vol. 43, no. 4, pp. 1213–1225, Aug. 2013. doi: 10.1109/TSMCB.2012.2226577
|
[35] |
J. Yang, S. H. Li, and X. H. Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 160–169, Jan. 2013. doi: 10.1109/TIE.2012.2183841
|
[36] |
H. G. Zhang, J. Han, C. M. Luo, and Y. C. Wang, “Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 8, pp. 2289–2300, Aug. 2017. doi: 10.1109/TSMC.2017.2652499
|
[37] |
M. Chen, “Robust tracking control for self-balancing mobile robots using disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 458–465, Jul. 2017. doi: 10.1109/JAS.2017.7510544
|
[38] |
X. C. Shi, C.-C. Lim, P. Shi, and S. Y. Xu, “Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5200–5213, Nov. 2018. doi: 10.1109/TNNLS.2018.2793968
|
[39] |
Z. Liu, G. Y. Lai, Y. Zhang, and C. L. P. Chen, “Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 1998–2011, Dec. 2015. doi: 10.1109/TFUZZ.2015.2396075
|
[40] |
G. W. Dong, H. Y. Li, H. Ma, and R. Q. Lu, “Finite-time consensus tracking neural network FTC of multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 653–662, Feb. 2021. doi: 10.1109/TNNLS.2020.2978898
|
[41] |
Y. X. Su, Q. L. Wang, and C. Y. Sun, “Self-triggered consensus control for linear multi-agent systems with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 150–157, Jan. 2020. doi: 10.1109/JAS.2019.1911837
|
[42] |
Q. S. Liu and J. Wang, “A second-order multi-agent network for boundconstrained distributed optimization,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3310–3315, Dec. 2015. doi: 10.1109/TAC.2015.2416927
|
[43] |
T. P. Zhang and S. S. Ge, “Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs,” Automatica, vol. 43, no. 6, pp. 1021–1033, Jun. 2007. doi: 10.1016/j.automatica.2006.12.014
|
[44] |
J. L. Du, X. Hu, M. Krstic, and Y. Q. Sun, “Robust dynamic positioning of ships with disturbances under input saturation,” Automatica, vol. 73, pp. 207–214, Jun. 2016. doi: 10.1016/j.automatica.2016.06.020
|
[45] |
B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Trans. Autom. Control, vol. 51, no. 9, pp. 1578–1583, Sep. 2006. doi: 10.1109/TAC.2006.878732
|
[46] |
X.-M. Zhang, Q.-L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2019.
|
[47] |
H. R. Ren, R. Q. Lu, J. L. Xiong, and Y. Xu, “Optimal estimation for discretetime linear system with communication constraints and measurement quantization,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 50, no. 5, pp. 1932–1942, May 2020. doi: 10.1109/TSMC.2018.2792009
|
[48] |
Y. Liu, X. P. Liu, Y. W. Jing, H. Q. Wang, and X. H. Li, “Annular domain finite-time connective control for large-scale systems with expanding construction,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.2960009.
|
[49] |
Q. L. Wei, T. Li, and D. R. Liu, “Learning control for air conditioning systems via human expressions,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7662–7671, Aug. 2021. doi: 10.1109/TIE.2020.3001849
|
[50] |
H. R. Ren, H. R. Karimi, R. Q. Lu, and Y. Q. Wu, “Synchronization of network systems via aperiodic sampled-data control with constant delay and application to unmanned ground vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4980–4990, Jun. 2020. doi: 10.1109/TIE.2019.2928241
|