A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 9
Sep.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
G. W. Dong, L. Cao, D. Y. Yao, H. Y. Li, and R. Q. Lu, "Adaptive Attitude Control for Multi-MUAV Systems With Output Dead-Zone and Actuator Fault," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1567-1575, Sep. 2021. doi: 10.1109/JAS.2020.1003605
Citation: G. W. Dong, L. Cao, D. Y. Yao, H. Y. Li, and R. Q. Lu, "Adaptive Attitude Control for Multi-MUAV Systems With Output Dead-Zone and Actuator Fault," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1567-1575, Sep. 2021. doi: 10.1109/JAS.2020.1003605

Adaptive Attitude Control for Multi-MUAV Systems With Output Dead-Zone and Actuator Fault

doi: 10.1109/JAS.2020.1003605
Funds:  This work was partially supported by the National Natural Science Foundation of China (62033003, 62003098), the Local Innovative and Research Teams Project of Guangdong Special Support Program (2019BT02X353), and the China Postdoctoral Science Foundation (2019M662813, 2020T130124, 2020M682614)
More Information
  • Many mechanical parts of multi-rotor unmanned aerial vehicle (MUAV) can easily produce non-smooth phenomenon and the external disturbance that affects the stability of MUAV. For multi-MUAV attitude systems that experience output dead-zone, external disturbance and actuator fault, a leader-following consensus anti-disturbance and fault-tolerant control (FTC) scheme is proposed in this paper. In the design process, the effect of unknown nonlinearity in multi-MUAV systems is addressed using neural networks (NNs). In order to balance out the effects of external disturbance and actuator fault, a disturbance observer is designed to compensate for the aforementioned negative impacts. The Nussbaum function is used to address the problem of output dead-zone. The designed fault-tolerant controller guarantees that the output signals of all followers and leader are synchronized by the backstepping technique. Finally, the effectiveness of the control scheme is verified by simulation experiments.

     

  • loading
  • [1]
    C. Peng, C. C. Zhao, X. G. Gong, G. Y. Qiao, Y. Bai, D. F. Xu, Q. J. Gao, and Y. T. Tian, “Variable structure and variable coefficient proportionalintegral-derivative control to prevent actuator saturation of yaw movement for a coaxial eight-rotor unmanned aerial vehicle,” Proc IMechE,Part G:J. Aerospace Engineering, vol. 229, pp. 1661–1674, Oct. 2015. doi: 10.1177/0954410014558319
    [2]
    C. Y. Fu, W. Hong, H. Q. Lu, L. Zhang, X. J. Guo, and Y. T. Tian, “Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints,” Aerosp. Sci. Technol., vol. 78, pp. 593–603, May 2018. doi: 10.1016/j.ast.2018.05.021
    [3]
    M. H. Zhang and X. J. Jing, “A bioinspired dynamics-based adaptive fuzzy smc method for half-car active suspension systems with input dead zones and saturations,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1743–1755, Apr. 2021.
    [4]
    H. W. Lin, B. Zhao, D. R. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
    [5]
    P. H. Du, Y. N. Pan, H. Y. Li, and H.-K. Lam, “Nonsingular finite-time eventtriggered fuzzy control for large-scale nonlinear systems,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.2992632.
    [6]
    L. H. Kong, W. He, C. G. Yang, and C. Y. Sun, “Robust neurooptimal control for a robot via adaptive dynamic programming,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2020.3006850.
    [7]
    X. M. Zhao, H. Mo, K. F. Yan, and L. X. Li, “Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 178–186, Jan. 2020.
    [8]
    D. R. Liu, D. Wang, D. B. Zhao, Q. L. Wei, and N. Jin, “Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 628–634, Jul. 2012. doi: 10.1109/TASE.2012.2198057
    [9]
    H. Ma, H. Y. Li, R. Q. Lu, and T. W. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci China Inf Sci, vol. 63, no. 5, pp. 157–171, May 2020. doi: 10.1007/s11432-019-2680-1
    [10]
    Y. M. Li and S. C. Tong, “Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1153–1163, Jun. 2018. doi: 10.1109/TFUZZ.2017.2710950
    [11]
    Z. G. Zeng and J. Wang, “Improved conditions for global exponential stability of recurrent neural networks with time-varying delays,” IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 623–635, May 2006. doi: 10.1109/TNN.2006.873283
    [12]
    S. C. Tong, Y. M. Li, and Y. J. Liu, “Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1575–1585, Apr. 2021. doi: 10.1109/TNNLS.2020.2985417
    [13]
    W. B. Xiao, L. Cao, H.Y. Li, and R. Lu, “Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay,” Sci China Inf Sci, vol. 63, no. 3, Article No. 132202, Mar. 2020. doi: 10.1007/s11432-019-2678-2
    [14]
    W. C. Zou, P. Shi, Z. R. Xiang, and Y. Shi, “Finite-time consensus of secondorder switched nonlinear multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1757–1762, May 2020. doi: 10.1109/TNNLS.2019.2920880
    [15]
    C. G. Yang, D. Y. Huang, W. He, and L. Cheng, “Neural control of robot manipulators with trajectory tracking constraints and input saturation,” IEEE Trans. Neural Netw. Learn. Syst., 2020. DOI: 10.1109/TNNLS.2020.3017202.
    [16]
    Y. M. Li, K.W. Li, and S. C. Tong, “Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 1, pp. 96–110, Jan. 2019. doi: 10.1109/TFUZZ.2018.2868898
    [17]
    A. K. Jain and S. Bhasin, “Tracking control of uncertain nonlinear systems with unknown constant input delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420–425, Mar. 2020. doi: 10.1109/JAS.2019.1911807
    [18]
    Y. N. Pan, P. H. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance,” IEEE Trans. Fuzzy Syst., 2020. DOI: 10.1109/TFUZZ.2020.2999746.
    [19]
    Z. T. Li, L. X. Gao, W. H. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, Jan. 2020. doi: 10.1109/JAS.2019.1911858
    [20]
    H. J. Liang, G. L. Liu, H. W. Zhang, and T. W. Huang, “Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2239–2250, May 2021. doi: 10.1109/TNNLS.2020.3003950
    [21]
    Y. Yang and D. Yue, “Distributed tracking control of a class of multi-agent systems in non-affine pure-feedback form under a directed topology,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 169–180, Jan. 2018. doi: 10.1109/JAS.2017.7510382
    [22]
    B. Zhao and D. R. Liu, “Event-triggered decentralized tracking control of modular reconfigurable robots through adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3054–3064, Apr. 2020. doi: 10.1109/TIE.2019.2914571
    [23]
    H. M. Guzey, T. Dierks, S. Jagannathan, and L. Acar, “Modified consensus-based output feedback control of quadrotor UAV formations using neural networks,” J. Intell. Robot. Syst., vol. 94, pp. 283–300, 2019. doi: 10.1007/s10846-018-0961-y
    [24]
    X. W. Dong, Y. F. Li, C. Lu, G. Q. Hu, Q. D. Li, and Z. Ren, “Time-varying formation tracking for UAV swarm systems with switching directed topologies,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3674–3685, Dec. 2019. doi: 10.1109/TNNLS.2018.2873063
    [25]
    X. H. Wang, V. Yadav, and S. N. Blakrishnan, “Cooperative UAV formation flying with obstacle/collision avoidance,” IEEE Trans. Contr. Syst. Technol., vol. 15, no. 4, pp. 672–679, Jul. 2007. doi: 10.1109/TCST.2007.899191
    [26]
    Z. G. Zeng and J. Wang, “Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks,” IEEE Trans. Syst.,Man,Cybern. B,Cybern., vol. 38, no. 6, pp. 1525–1536, Dec. 2008. doi: 10.1109/TSMCB.2008.927717
    [27]
    Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, and C. W. Wu, “Adaptive neural network tracking control for robotic manipulators with dead zone,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3611–3620, Dec. 2019. doi: 10.1109/TNNLS.2018.2869375
    [28]
    S. C. Tong, S. Sui, and Y. M. Li, “Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone,” IEEE Trans. Cybern., vol. 45, no. 12, pp. 2816–2826, Dec. 2015. doi: 10.1109/TCYB.2014.2386912
    [29]
    T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 44, no. 7, pp. 1895–1903, Jul. 2008. doi: 10.1016/j.automatica.2007.11.025
    [30]
    Q. K. Shen and P. Shi, “Output consensus control of multiagent systems with unknown nonlinear dead zone,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 10, pp. 1329–1337, Oct. 2016. doi: 10.1109/TSMC.2015.2503380
    [31]
    X. L. Hu and J. Wang, “Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1487–1499, Nov. 2006. doi: 10.1109/TNN.2006.879774
    [32]
    W. C. Zou, P. Shi, Z. R. Xiang, and Y. Shi, “Consensus tracking control of switched stochastic nonlinear multiagent systems via event-triggered strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1036–1045, Mar. 2020. doi: 10.1109/TNNLS.2019.2917137
    [33]
    Q. Zhou, G. D. Chen, R. Q. Lu, and W. W. Bai, “Disturbance-observer-based event-triggered control for multi-agent systems with input saturation,” Sci. Sinica Inform, vol. 49, no. 11, pp. 1502–1516, Nov. 2019. doi: 10.1360/SSI-2019-0105
    [34]
    M. Chen and S. S. Ge, “Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer,” IEEE Trans. Cybern., vol. 43, no. 4, pp. 1213–1225, Aug. 2013. doi: 10.1109/TSMCB.2012.2226577
    [35]
    J. Yang, S. H. Li, and X. H. Yu, “Sliding-mode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 160–169, Jan. 2013. doi: 10.1109/TIE.2012.2183841
    [36]
    H. G. Zhang, J. Han, C. M. Luo, and Y. C. Wang, “Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 8, pp. 2289–2300, Aug. 2017. doi: 10.1109/TSMC.2017.2652499
    [37]
    M. Chen, “Robust tracking control for self-balancing mobile robots using disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 458–465, Jul. 2017. doi: 10.1109/JAS.2017.7510544
    [38]
    X. C. Shi, C.-C. Lim, P. Shi, and S. Y. Xu, “Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5200–5213, Nov. 2018. doi: 10.1109/TNNLS.2018.2793968
    [39]
    Z. Liu, G. Y. Lai, Y. Zhang, and C. L. P. Chen, “Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 1998–2011, Dec. 2015. doi: 10.1109/TFUZZ.2015.2396075
    [40]
    G. W. Dong, H. Y. Li, H. Ma, and R. Q. Lu, “Finite-time consensus tracking neural network FTC of multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 653–662, Feb. 2021. doi: 10.1109/TNNLS.2020.2978898
    [41]
    Y. X. Su, Q. L. Wang, and C. Y. Sun, “Self-triggered consensus control for linear multi-agent systems with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 150–157, Jan. 2020. doi: 10.1109/JAS.2019.1911837
    [42]
    Q. S. Liu and J. Wang, “A second-order multi-agent network for boundconstrained distributed optimization,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3310–3315, Dec. 2015. doi: 10.1109/TAC.2015.2416927
    [43]
    T. P. Zhang and S. S. Ge, “Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs,” Automatica, vol. 43, no. 6, pp. 1021–1033, Jun. 2007. doi: 10.1016/j.automatica.2006.12.014
    [44]
    J. L. Du, X. Hu, M. Krstic, and Y. Q. Sun, “Robust dynamic positioning of ships with disturbances under input saturation,” Automatica, vol. 73, pp. 207–214, Jun. 2016. doi: 10.1016/j.automatica.2016.06.020
    [45]
    B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Trans. Autom. Control, vol. 51, no. 9, pp. 1578–1583, Sep. 2006. doi: 10.1109/TAC.2006.878732
    [46]
    X.-M. Zhang, Q.-L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, and C. Peng, “Networked control systems: A survey of trends and techniques,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2019.
    [47]
    H. R. Ren, R. Q. Lu, J. L. Xiong, and Y. Xu, “Optimal estimation for discretetime linear system with communication constraints and measurement quantization,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 50, no. 5, pp. 1932–1942, May 2020. doi: 10.1109/TSMC.2018.2792009
    [48]
    Y. Liu, X. P. Liu, Y. W. Jing, H. Q. Wang, and X. H. Li, “Annular domain finite-time connective control for large-scale systems with expanding construction,” IEEE Trans. Syst.,Man,Cybern.,Syst., 2019. DOI: 10.1109/TSMC.2019.2960009.
    [49]
    Q. L. Wei, T. Li, and D. R. Liu, “Learning control for air conditioning systems via human expressions,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7662–7671, Aug. 2021. doi: 10.1109/TIE.2020.3001849
    [50]
    H. R. Ren, H. R. Karimi, R. Q. Lu, and Y. Q. Wu, “Synchronization of network systems via aperiodic sampled-data control with constant delay and application to unmanned ground vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4980–4990, Jun. 2020. doi: 10.1109/TIE.2019.2928241

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1620) PDF downloads(131) Cited by()

    Highlights

    • The leader-following consensus anti-disturbance and fault-tolerant control scheme is developed for the multi-MUAV attitude systems under a directed communication graph.
    • By introducing neural networks, the effect of unknown nonlinearity in multi-MUAV systems is disposed. The influence of output dead-zone problem on attitude control can be effectively reduced by Nussbaum function. A disturbance observer is designed to compensate the effects of external disturbance and actuator fault, and incorporate the disturbance estimation into the controller to actively compensate for the disturbance.
    • Different from most existing results, in this paper, the developed fault-tolerant controller can effectively solve the tracking control problem of the multi-MUAV attitude systems under output dead-zone, external disturbance and actuator fault.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return