IEEE/CAA Journal of Automatica Sinica
Citation: | G. H. Lin, H. Y. Li, H. Ma, D. Y. Yao, and R. Q. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 111–122, Jan. 2022. doi: 10.1109/JAS.2020.1003596 |
[1] |
J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, Sep. 2004. doi: 10.1109/TAC.2004.834433
|
[2] |
W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative control,” IEEE Control Syst. Mag., vol. 27, no. 2, pp. 71–82, Apr. 2007. doi: 10.1109/MCS.2007.338264
|
[3] |
Y. Y. Chen, R. Yu, Y. Zhang, and C. L. Liu, “Circular formation flight control for unmanned aerial vehicles with directed network and external disturbance,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 505–516, Mar. 2020. doi: 10.1109/JAS.2019.1911669
|
[4] |
Z. Y. Gao and G. Guo, “Fixed-time sliding mode formation control of AUVs based on a disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 539–545, Mar. 2020. doi: 10.1109/JAS.2020.1003057
|
[5] |
Q. L. Yang, J. Sun, and J. Chen, “Output consensus for heterogeneous linear multiagent systems with a predictive event-triggered mechanism,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1993–2005, Apr. 2021. doi: 10.1109/TCYB.2019.2895044
|
[6] |
Y. X. Su, Q. L. Wang, and C. Y. Sun, “Self-triggered consensus control for linear multi-agent systems with input saturation,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 150–157, Jan. 2020. doi: 10.1109/JAS.2019.1911837
|
[7] |
Z. K. Li, W. Ren, X. D. Liu, and M. Y. Fu, “Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1786–1791, Jul. 2013. doi: 10.1109/TAC.2012.2235715
|
[8] |
Q. S. Liu and J. Wang, “A second-order multi-agent network for bound-constrained distributed optimization,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3310–3315, Dec. 2015. doi: 10.1109/TAC.2015.2416927
|
[9] |
H. W. Zhang, F. L. Lewis, and A. Das, “Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback,” IEEE Trans. Autom. Control, vol. 56, no. 8, pp. 1948–1952, Aug. 2011. doi: 10.1109/TAC.2011.2139510
|
[10] |
Y. Y. Qian, L. Liu, and G. Feng, “Distributed event-triggered adaptive control for consensus of linear multi-agent systems with external disturbances,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 2197–2208, May 2020. doi: 10.1109/TCYB.2018.2881484
|
[11] |
Z. K. Li, G. H. Wen, Z. S. Duan, and W. Ren, “Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152–1157, Apr. 2015. doi: 10.1109/TAC.2014.2350391
|
[12] |
W. B. Xiao, L. Cao, H. Y. Li, and R. Q. Lu, “Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay,” Sci. China Inf. Sci., vol. 63, no. 3, Article No. 132202, Feb. 2020. doi: 10.1007/s11432-019-2678-2
|
[13] |
Q. Zhou, G. D. Chen, R. Q. Lu, and W. W. Bai, “Disturbance-observer-based event-triggered control for multi-agent systems with input saturation,” Sci. Sinica Inform., vol. 49, no. 11, pp. 1502–1516, Nov. 2019.
|
[14] |
G. W. Dong, H. Y. Li, H. Ma, and R. Q. Lu, “Finite-time consensus tracking neural network FTC of multi-agent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 653–662, Nov. 2021. doi: 10.1109/TNNLS.2020.2978898
|
[15] |
Q. Zhou, W. Wang, H. J. Liang, M. V. Basin, and B. H. Wang, “Observer-based event-triggered fuzzy adaptive bipartite containment control of multiagent systems with input quantization,” IEEE Trans. Fuzzy Syst., vol. 29, no. 2, pp. 372–384, Feb. 2021. doi: 10.1109/TFUZZ.2019.2953573
|
[16] |
W. Wang, H. J. Liang, Y. N. Pan, and T. S. Li, “Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3879–3891, Sep. 2020. doi: 10.1109/TCYB.2020.2969499
|
[17] |
W. C. Zou, P. Shi, Z. R. Xiang, and Y. Shi, “Consensus tracking control of switched stochastic nonlinear multiagent systems via event-triggered strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1036–1045, Mar. 2020. doi: 10.1109/TNNLS.2019.2917137
|
[18] |
A. K. Jain and S. Bhasin, “Tracking control of uncertain nonlinear systems with unknown constant input delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 420–425, Mar. 2020. doi: 10.1109/JAS.2019.1911807
|
[19] |
Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, and C. W. Wu, “Adaptive neural network tracking control for robotic manipulators with dead zone,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3611–3620, Dec. 2019. doi: 10.1109/TNNLS.2018.2869375
|
[20] |
C. E. Ren, C. L. P. Chen, T. Du, and Y. Guan, “Fuzzy adaptive leader-following consensus control for nonlinear multi-agent systems with unknown control directions,” Int. J. Fuzzy Syst., vol. 21, no. 7, pp. 2066–2076, Aug. 2019. doi: 10.1007/s40815-019-00710-1
|
[21] |
M. H. Zhang and X. J. Jing, “A bioinspired dynamics-based adaptive fuzzy SMC method for half-car active suspension systems with input dead zones and saturations,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1743–1755, Apr. 2021. doi: 10.1109/TCYB.2020.2972322
|
[22] |
W. W. Bai, T. S. Li, and S. C. Tong, “NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4573–4584, Nov. 2020. doi: 10.1109/TCYB.2020.2963849
|
[23] |
Z. T. Li, L. X. Gao, W. H. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, Jan. 2020. doi: 10.1109/JAS.2019.1911858
|
[24] |
H. Ma, H. Y. Li, R. Q. Lu, and T. W. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Sci. China Inf. Sci., vol. 63, no. 5, Article No. 150212, Mar. 2020. doi: 10.1007/s11432-019-2680-1
|
[25] |
L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu, “Synthesis of human-in-the-loop control protocols for autonomous systems,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 450–462, Apr. 2016. doi: 10.1109/TASE.2016.2530623
|
[26] |
B. Kiumarsi and T. Başar, “Human-in-the-loop control of distributed multi-agent systems: A relative input-output approach,” in Proc. IEEE Conf. Decision and Control, Miami, USA, 2018, pp. 3343−3348.
|
[27] |
A. T. Koru, T. Yucelen, R. Sipahi, A. Ramĺrez, and K. M. Dogan, “Stability of human-in-the-loop multiagent systems with time delays,” in Proc. American Control Conf., Philadelphia, USA, 2019, pp. 4854−4859.
|
[28] |
T. Hatanaka, N. Chopra, and M. Fujita, “Passivity-based bilateral human-swarm-interactions for cooperative robotic networks and human passivity analysis,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 1033−1039.
|
[29] |
Y. C. Chang, “Architecture design for performing grasp-and-lift tasks in brain-machine-interface-based human-in-the-loop robotic system,” IET Cyber-Phys. Syst.:Theory Appl., vol. 4, no. 3, pp. 198–203, Sep. 2019. doi: 10.1049/iet-cps.2018.5066
|
[30] |
M. Inoue and V. Gupta, ““Weak” control for human-in-the-loop systems,” IEEE Control Syst. Lett., vol. 3, no. 2, pp. 440–445, Apr. 2019. doi: 10.1109/LCSYS.2019.2891489
|
[31] |
B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Trans. Autom. Control, vol. 51, no. 9, pp. 1578–1583, Sep. 2006. doi: 10.1109/TAC.2006.878732
|
[32] |
D. Ye, M. M. Chen, and H. J. Yang, “Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 757–767, Mar. 2019. doi: 10.1109/TCYB.2017.2782731
|
[33] |
P. Gong, W. Y. Lan, and Q. L. Han, “Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-agent systems with directed topologies,” Automatica, vol. 117, Article No. 109011, Jul. 2020. doi: 10.1016/j.automatica.2020.109011
|
[34] |
C. Deng and G. H. Yang, “Adaptive fault-tolerant control for a class of nonlinear multi-agent systems with actuator faults,” J. Franklin Inst., vol. 354, no. 12, pp. 4784–4800, Aug. 2017. doi: 10.1016/j.jfranklin.2017.05.034
|
[35] |
Y. J. Wang, Y. D. Song, and F. L. Lewis, “Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3978–3988, Jun. 2015.
|
[36] |
S. Chen, D. W. C. Ho, L. L. Li, and M. Liu, “Fault-tolerant consensus of multi-agent system with distributed adaptive protocol,” IEEE Trans. Cybern., vol. 45, no. 10, pp. 2142–2155, Oct. 2015. doi: 10.1109/TCYB.2014.2366204
|
[37] |
W. Wang, D. Wang, and Z. H. Peng, “Cooperative fuzzy adaptive output feedback control for synchronisation of nonlinear multi-agent systems under directed graphs,” Int. J. Syst. Sci., vol. 46, no. 16, pp. 2982–2995, Dec. 2015. doi: 10.1080/00207721.2014.886135
|
[38] |
T. S. Li, Z. F. Li, D. Wang, and C. L. P. Chen, “Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1188–1201, Jun. 2015. doi: 10.1109/TNNLS.2014.2334638
|
[39] |
H. J. Liang, X. Y. Guo, Y. N. Pan, and T. W. Huang, “Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers,” IEEE Trans. Fuzzy Syst., vol. 29, no. 6, pp. 1601–1614, Jun. 2021. doi: 10.1109/TFUZZ.2020.2982618
|
[40] |
J. Mao, H. R. Karimi, and Z. R. Xiang, “Observer-based adaptive consensus for a class of nonlinear multiagent systems,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 9, pp. 1893–1900, Sep. 2019. doi: 10.1109/TSMC.2017.2776219
|
[41] |
Y. Liu, X. P. Liu, Y. W. Jing, H. Q. Wang, and X. H. Li, “Annular domain finite-time connective control for large-scale systems with expanding construction,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published. doi: 10.1109/TSMC.2019.2960009
|
[42] |
L. J. Wang and C. L. P. Chen, “Reduced-order observer-based dynamic event-triggered adaptive NN control for stochastic nonlinear systems subject to unknown input saturation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1678–1690, Apr. 2021. doi: 10.1109/TNNLS.2020.2986281
|
[43] |
S. C. Tong, X. Min, and Y. X. Li, “Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3903–3913, Sep. 2020. doi: 10.1109/TCYB.2020.2977175
|
[44] |
Z. K. Li, W. Ren, X. D. Liu, and L. H. Xie, “Distributed consensus of linear multi-agent systems with adaptive dynamic protocols,” Automatica, vol. 49, no. 7, pp. 1986–1995, Jul. 2013. doi: 10.1016/j.automatica.2013.03.015
|
[45] |
Y. Z. Lv, Z. K. Li, Z. S. Duan, and J. Chen, “Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input,” Automatica, vol. 74, pp. 308–314, Dec. 2016. doi: 10.1016/j.automatica.2016.07.041
|
[46] |
S. Khoo, L. H. Xie, and Z. H. Man, “Robust finite-time consensus tracking algorithm for multirobot systems,” IEEE/ASME Trans. Mechatronics, vol. 14, no. 2, pp. 219–228, Apr. 2009. doi: 10.1109/TMECH.2009.2014057
|
[47] |
W. B. Zhang, Y. Tang, Y. R. Liu, and J. Kurths, “Event-triggering containment control for a class of multi-agent networks with fixed and switching topologies,” IEEE Trans. Circuits Syst. I:Reg. Pap., vol. 64, no. 3, pp. 619–629, Mar. 2017. doi: 10.1109/TCSI.2016.2618944
|
[48] |
Y. G. Hong, G. R. Chen, and L. Bushnell, “Distributed observers design for leader-following control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, Mar. 2008. doi: 10.1016/j.automatica.2007.07.004
|
[49] |
R. Cui, B. Ren, and S. S. Ge, “Synchronised tracking control of multi-agent system with high-order dynamics,” IET Control Theory Appl., vol. 6, no. 5, pp. 603–614, Mar. 2012. doi: 10.1049/iet-cta.2011.0011
|
[50] |
Z. Y. Jia, L. L. Wang, J. Q. Yu, and X. L. Ai, “Distributed adaptive neural networks leader-following formation control for quadrotors with directed switching topologies,” ISA Trans., vol. 93, pp. 93–107, Oct. 2019. doi: 10.1016/j.isatra.2019.02.030
|
[51] |
H. R. Ren, R. Q. Lu, J. L. Xiong, and Y. Xu, “Optimal estimation for discrete-time linear system with communication constraints and measurement quantization,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 50, no. 5, pp. 1932–1942, May 2020. doi: 10.1109/TSMC.2018.2792009
|
[52] |
Y. B. Huang, Y. He, J. Q. An, and M. Wu, “Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2905–2912, Jun. 2020. doi: 10.1109/TAC.2020.3013930
|
[53] |
C. K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, and M. Wu, “A relaxed quadratic function negative-determination lemma and its application to time-delay systems,” Automatica, vol. 113, Article No. 108764, Mar. 2020. doi: 10.1016/j.automatica.2019.108764
|
[54] |
H. R. Ren, H. R. Karimi, R. Q. Lu, and Y. Q. Wu, “Synchronization of network systems via aperiodic sampled-data control with constant delay and application to unmanned ground vehicles,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4980–4990, Jun. 2020. doi: 10.1109/TIE.2019.2928241
|