IEEE/CAA Journal of Automatica Sinica
Citation: | Qiyue Wang, Wenhua Jiao, Peng Wang and YuMing Zhang, "Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 334-343, Feb. 2021. doi: 10.1109/JAS.2020.1003518 |
[1] |
H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim, and S. D. Noh, “Smart manufacturing: Past research, present findings, and future directions,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 3, no. 1, pp. 111–128, Jan. 2016. doi: 10.1007/s40684-016-0015-5
|
[2] |
N. Q. Wu, Z. W. Li, K. Barkaoui, X. O. Li, T. Murata, and M. C. Zhou, “IoT-based smart and complex systems: A guest editorial report,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 69–73, Jan. 2018. doi: 10.1109/JAS.2017.7510748
|
[3] |
A. Kusiak, “Smart manufacturing must embrace big data,” Nature, vol. 544, no. 7648, pp. 23–25, Apr. 2017. doi: 10.1038/544023a
|
[4] |
M. Ghahramani, Y. Qiao, M. C. Zhou, A. O. Hagan, and J. Sweeney, “AI-based modeling and data-driven evaluation for smart manufacturing processes,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1026–1037, Jul. 2020. doi: 10.1109/JAS.2020.1003114
|
[5] |
Q. L. Qi and F. Tao, “Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison,” IEEE Access, vol. 6, pp. 3585–3593, Jan. 2018. doi: 10.1109/ACCESS.2018.2793265
|
[6] |
F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry: State-of-the-art,” IEEE Trans. Ind. Inform., vol. 15, no. 4, pp. 2405–2415, Apr. 2019. doi: 10.1109/TII.2018.2873186
|
[7] |
S. Haag and R. Anderl, “Digital twin – Proof of concept,” Manuf. Lett., vol. 15, pp. 64–66, Jan. 2018. doi: 10.1016/j.mfglet.2018.02.006
|
[8] |
T. DebRoy, W. Zhang, J. Turner, and S. S. Babu, “Building digital twins of 3D printing machines,” Scr. Mater., vol. 135, pp. 119–124, Jul. 2017. doi: 10.1016/j.scriptamat.2016.12.005
|
[9] |
T. Mukherjee and T. DebRoy, “A digital twin for rapid qualification of 3D printed metallic components,” Appl. Mater. Today, vol. 14, pp. 59–65, Mar. 2019. doi: 10.1016/j.apmt.2018.11.003
|
[10] |
R. Soderberg, K. Warmefjord, J. S. Carlson, and L. Lindkvist, “Toward a digital twin for real-time geometry assurance in individualized production,” CIRP Ann., vol. 66, no. 1, pp. 137–140, 2017. doi: 10.1016/j.cirp.2017.04.038
|
[11] |
R. Cupek, M. Drewniak, A. Ziebinski, and M. Fojcik, ““Digital twins” for highly customized electronic devices – Case study on a rework operation,” IEEE Access, vol. 7, pp. 164127–164143, Nov. 2019. doi: 10.1109/ACCESS.2019.2950955
|
[12] |
H. Zhang, Q. Liu, X. Chen, D. Zhang, and J. W. Leng, “A digital twin-based approach for designing and multi-objective optimization of hollow glass production line,” IEEE Access, vol. 5, pp. 26901–26911, Oct. 2017. doi: 10.1109/ACCESS.2017.2766453
|
[13] |
R. Dong, C. Y. She, W. Hardjawana, Y. H. Li, and B. Vucetic, “Deep learning for hybrid 5G services in mobile edge computing systems: Learn from a digital twin,” IEEE Trans. Wirel. Commun., vol. 18, no. 10, pp. 4692–4707, Oct. 2019. doi: 10.1109/TWC.2019.2927312
|
[14] |
R. H. Guerra, R. Quiza, A. Villalonga, J. Arenas, and F. Castano, “Digital twin-based optimization for ultraprecision motion systems with backlash and friction,” IEEE Access, vol. 7, pp. 93462–93472, Jul. 2019. doi: 10.1109/ACCESS.2019.2928141
|
[15] |
R. L. Zhao, D. X. Yan, Q. Liu, J. W. Leng, J. F. Wan, X. Chen, and X. F. Zhang, “Digital twin-driven cyber-physical system for autonomously controlling of micro punching system,” IEEE Access, vol. 7, pp. 9459–9469, Jan. 2019. doi: 10.1109/ACCESS.2019.2891060
|
[16] |
Y. L. Fang, C. Peng, P. Lou, Z. D. Zhou, J. M. Hu, and J. W. Yan, “Digital-twin-based job shop scheduling toward smart manufacturing,” IEEE Trans. Ind. Inform., vol. 15, no. 12, pp. 6425–6435, Dec. 2019. doi: 10.1109/TII.2019.2938572
|
[17] |
B. Akteke-Ozturk, G. W. Weber, and G. Koksal, “Optimization of generalized desirability functions under model uncertainty,” Optimization, vol. 66, no. 12, pp. 2157–2169, Sept. 2017. doi: 10.1080/02331934.2017.1371167
|
[18] |
A. Ozmen, E. Kropat, and G. W. Weber, “Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty,” Optimization, vol. 66, no. 12, pp. 2135–2155, Dec. 2017. doi: 10.1080/02331934.2016.1209672
|
[19] |
B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, “Shaping the digital twin for design and production engineering,” CIRP Ann., vol. 66, no. 1, pp. 141–144, 2017. doi: 10.1016/j.cirp.2017.04.040
|
[20] |
J. L. Wang, L. K. Ye, R. X. Gao, C. Li, and L. B. Zhang, “Digital twin for rotating machinery fault diagnosis in smart manufacturing,” Int. J. Prod. Res., vol. 57, no. 12, pp. 3920–3934, 2019. doi: 10.1080/00207543.2018.1552032
|
[21] |
P. Jain, J. Poon, J. P. Singh, C. Spanos, S. R. Sanders, and S. K. Panda, “A digital twin approach for fault diagnosis in distributed photovoltaic systems,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 940–956, Jan. 2020. doi: 10.1109/TPEL.2019.2911594
|
[22] |
Y. Liu, L. Zhang, Y. Yang, L. F. Zhou, L. Ren, F. Wang, R. Liu, Z. B. Pang, and M. J. Deen, “A novel cloud-based framework for the elderly healthcare services using digital twin,” IEEE Access, vol. 7, pp. 49088–49101, Apr. 2019. doi: 10.1109/ACCESS.2019.2909828
|
[23] |
F. Tao, M. Zhang, Y. S. Liu, and A. Y. C. Nee, “Digital twin driven prognostics and health management for complex equipment,” CIRP Ann., vol. 67, no. 1, pp. 169–172, 2018. doi: 10.1016/j.cirp.2018.04.055
|
[24] |
M. K. Zhou, J. F. Yan, and D. H. Feng, “Digital twin framework and its application to power grid online analysis,” CSEE J. Power Energy Syst., vol. 5, no. 3, pp. 391–398, Sept. 2019.
|
[25] |
S. M. M. Rahman, “Cyber-physical-social system between a humanoid robot and a virtual human through a shared platform for adaptive agent ecology,” IEEE/CAA J. Autom. Sinina, vol. 5, no. 1, pp. 190–203, Jan. 2018. doi: 10.1109/JAS.2017.7510760
|
[26] |
H. H. Zhang and S. K. Agrawal, “An active neck brace controlled by a joystick to assist head motion,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 37–43, Jan. 2018. doi: 10.1109/LRA.2017.2728858
|
[27] |
Z. Ma and P. Ben-Tzvi, “RML glove – An exoskeleton glove mechanism with haptics feedback,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 641–652, Apr. 2015. doi: 10.1109/TMECH.2014.2305842
|
[28] |
G. L. Du, P. Zhang, and X. Liu, “Markerless human-manipulator interface using leap motion with interval Kalman filter and improved particle filter,” IEEE Trans. Ind. Inform., vol. 12, no. 2, pp. 694–704, Apr. 2016. doi: 10.1109/TII.2016.2526674
|
[29] |
K. Zinchenko, C. Y. Wu, and K. T. Song, “A study on speech recognition control for a surgical robot,” IEEE Trans. Ind. Inform., vol. 13, no. 2, pp. 607–615, Apr. 2017. doi: 10.1109/TII.2016.2625818
|
[30] |
J. I. Lipton, A. J. Fay, and D. Rus, “Baxter’s homunculus: Virtual reality spaces for teleoperation in manufacturing,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 179–186, Jan. 2018. doi: 10.1109/LRA.2017.2737046
|
[31] |
Q. Y. Wang, W. H. Jiao, R. Yu, M. T. Johnson, and Y. M. Zhang, “Virtual reality robot-assisted welding based on human intention recognition,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 2, pp. 799–808, Apr. 2020. doi: 10.1109/TASE.2019.2945607
|
[32] |
M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ventura, “HTC vive: Analysis and accuracy improvement, ” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 2610–2615.
|
[33] |
D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “ROS reality: A virtual reality framework using consumer-grade hardware for ROS-enabled robots, ” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 1–9.
|
[34] |
L. K. Shi, C. D. Tong, T. Lan, and X. H. Shi, “Statistical process monitoring based on ensemble structure analysis,” IEEE/CAA J. Autom. Sinica, 2018. DOI: 10.1109/JAS.2017.7510877
|
[35] |
P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model and strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018. doi: 10.1109/JAS.2017.7510817
|
[36] |
B. Eygi Erdogan, S. Özöğür-Akyüz, and P. Karadayı Ataş, “A novel approach for panel data: An ensemble of weighted functional margin SVM models,” Inf. Sci, 2019. DOI: 10.1016/j.ins.2019.02.045
|
[37] |
M. S. Erden and T. Tomiyama, “Identifying welding skills for training and assistance with robot,” Sci. Technol. Weld. Join., vol. 14, no. 6, pp. 523–532, 2009. doi: 10.1179/136217109X437150
|
[38] |
Y. K. Liu, Y. M. Zhang, and L. Kvidahl, “Skilled human welder intelligence modeling and control: Part I – Modeling,” Weld. J., vol. 93, no. 2, pp. 46-s–52-s, 2014.
|
[39] |
Y. K. Liu, Y. M. Zhang, and L. Kvidahl, “Skilled human welder intelligence modeling and control: Part Ⅱ – Analysis and control applications,” Weld. J., vol. 93, no. 5, pp. 162-s–170-s, 2014.
|
[40] |
A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004. doi: 10.1023/B:STCO.0000035301.49549.88
|
[41] |
T. P. Minka, “Automatic choice of dimensionality for PCA,” in Proc. 13th Int. Conf. Neural Information Processing Systems, Cambridge USA, 2000, pp. 577–583.
|
[42] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011.
|