IEEE/CAA Journal of Automatica Sinica
Citation: | Zhou He, Ziyue Ma, Zhiwu Li and Alessandro Giua, "Parametric Transformation of Timed Weighted Marked Graphs: Applications in Optimal Resource Allocation," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 179-188, Jan. 2021. doi: 10.1109/JAS.2020.1003477 |
[1] |
M. Ibrahim and S. Reveliotis, “Throughput maximization of complex resource allocation systems through timed-continuous-Petri-net modeling,” Discrete Event Dyn. Syst., vol. 29, no. 3, pp. 393–409, 2019. doi: 10.1007/s10626-019-00289-7
|
[2] |
N. Ran, H. Y. Su, and S. G. Wang, “An improved approach to test diagnosability of bounded Petri nets,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 2, pp. 297–303, 2017. doi: 10.1109/JAS.2017.7510406
|
[3] |
L. Li, F. Basile, and Z. W. Li, “An approach to improve permissiveness of supervisors for GMECs in time Petri net systems,” IEEE Trans. Autom. Control, vol. 65, no. 1, pp. 237–251, 2019.
|
[4] |
D. Wang, X. Wang, and Z. W. Li, “Nonblocking supervisory control of state-tree Sstructures with conditional-preemption matrices,” IEEE Trans. on Ind. Inf., vol. 16, no. 6, pp. 3744–3756, 2020. doi: 10.1109/TII.2019.2939628
|
[5] |
N. Ran, J. Hao, Z. Dong, Z. He, Z. Liu, Y. Ruan, and S. G. Wang, “Kcodiagnosability verification of labeled Petri nets,” IEEE Access, vol. 7, pp. 185055–185062, 2019. doi: 10.1109/ACCESS.2019.2959904
|
[6] |
J. N. Zhou, J. C. Wang, and J. Wang, “A simulation engine for stochastic timed Petri nets and application to emergency healthcare systems,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 4, pp. 969–980, 2019. doi: 10.1109/JAS.2019.1911576
|
[7] |
J. C. Wang and D. M. Li, “Resource oriented workflow nets and workflow resource requirement analysis,” Int. J. Software Engineer. Knowledge Engineer, vol. 23, no. 5, pp. 667–693, 2013.
|
[8] |
F. Basile, M. P. Cabasino, and C. Seatzu, “State estimation and fault diagnosis of labeled time Petri net systems with unobservable transitions,” IEEE Trans. Autom. Control, vol. 4, no. 60, pp. 997–1009, 2015.
|
[9] |
R. Li and S. Reveliotis, “Performance optimization for a class of generalized stochastic Petri nets,” Discrete Event Dyn. Syst., vol. 25, no. 3, pp. 387–417, 2015. doi: 10.1007/s10626-014-0189-3
|
[10] |
D. Lefebvre, “Approximated timed reachability graphs for the robust control of discrete event systems,” Discrete Event Dyn. Syst., vol. 29, no. 1, pp. 31–56, 2019. doi: 10.1007/s10626-019-00275-z
|
[11] |
L. Pan, B. Yang, J. Q. Jiang, and M. C. Zhou, “A time Petri net with relaxed mixed semantics for schedulability analysis of flexible manufacturing systems,” IEEE Access, vol. 8, pp. 46480–46492, 2020. doi: 10.1109/ACCESS.2020.2978101
|
[12] |
V. M. Goncalves, C. A. Maia, and L. Hardouin, “On the steady-state control of timed event graphs with firing date constraints,” IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2187–2202, 2016. doi: 10.1109/TAC.2015.2481798
|
[13] |
P. Declerck, “Compromise approach for predictive control of timed event graphs with specifications defined by P-time event graphs,” Discrete Event Dyn. Syst., vol. 26, no. 4, pp. 611–632, 2016. doi: 10.1007/s10626-016-0227-4
|
[14] |
J. Campos, G. Chiola, J. M. Colom, and M. Silva, “Properties and performance bounds for timed marked graphs,” IEEE Trans. Fundam. Theory Appl., vol. 39, no. 5, pp. 386–401, 1992.
|
[15] |
J. V. Millo and R. De Simone, “Periodic scheduling of marked graphs using balanced binary words,” Theor. Comput. Sci., vol. 458, pp. 113–130, 2012. doi: 10.1016/j.tcs.2012.08.012
|
[16] |
B. Cottenceau, L. Hardouin, J. L. Boimond, and J. L. Ferrier, “Model reference control for timed event graphs in dioids,” Automatica, vol. 37, no. 9, pp. 1451–1458, 2001. doi: 10.1016/S0005-1098(01)00073-5
|
[17] |
B. Cottenceau, L. Hardouin, and J. L. Boimond, “Modeling and control of weight-balanced timed event graphs in dioids,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1219–1231, 2014. doi: 10.1109/TAC.2013.2294822
|
[18] |
J. M. Proth, N. Sauer, and X. Xie, “Optimization of the number of transportation devices in a flexible manufacturing system using event graphs,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 298–306, 1997. doi: 10.1109/41.585827
|
[19] |
Z. He, M. Liu, N. Ran, and Z. W. Li, “Firing rate optimization of deterministic timed event graphs by server performance improvement,” IEEE Access, vol. 6, pp. 70866–70873, 2018. doi: 10.1109/ACCESS.2018.2880460
|
[20] |
A. Giua, A. Piccaluga, and C. Seatzu, “Firing rate optimization of cyclic timed event graph,” Automatica, vol. 38, no. 1, pp. 91–103, 2002. doi: 10.1016/S0005-1098(01)00189-3
|
[21] |
M. Liu, Z. He, N. Q. Wu, A. Al-Ahmari, and Z. W. Li, “Resource configuration analysis for a class of Petri nets based on strongly connected characteristic resource subnets,” IEEE Access, vol. 5, pp. 26376–26386, 2017. doi: 10.1109/ACCESS.2017.2768069
|
[22] |
Z. W. Li and M. C. Zhou, “On siphon computation for deadlock control in a class of Petri nets,” IEEE Trans. Syst.,Man,Cybern. A,Syst.,Humans, vol. 38, no. 3, pp. 667–679, 2008. doi: 10.1109/TSMCA.2008.918605
|
[23] |
Z. W. Li, N. Q. Wu, and M. C. Zhou, “Deadlock control of automated manufacturing systems based on Petri nets–A literature review,” IEEE Trans. Syst.,Man,Cybern. C,Appl. Rev., vol. 42, no. 4, pp. 437–462, 2012. doi: 10.1109/TSMCC.2011.2160626
|
[24] |
B. Cottenceau, L. Hardouin, and J. Trunk, “Weight-balanced timed event graphs to model periodic phenomena in manufacturing systems,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 4, pp. 1731–1742, 2017. doi: 10.1109/TASE.2017.2729894
|
[25] |
E. Teruel, P. Chrzastowski-Wachtel, J.M. Colom, and M. Silva, “On weighted T-Systems,” Appl. Theory Petri Nets, vol. 616, pp. 348–367, 1992.
|
[26] |
A. Munier, “Régime asymptotique optimal d’un graphe d’événements temporisé généralisé: Application à un problème d’assemblage,” RAIPOAPⅡ, vol. 27, pp. 487–513, 1992.
|
[27] |
M. Nakamura and M. Silva, “Cycle time computation in deterministically timed weighted marked graphs,” in Proc. 7th IEEE Int. Conf. Emerg. Tech. Factory Autom., vol. 2, pp. 1037–1046, 1999.
|
[28] |
N. Sauer, “Marking optimization of weighted marked graphs,” Discrete Event Dyn. Syst., vol. 13, no. 3, pp. 245–262, 2003. doi: 10.1023/A:1024055724914
|
[29] |
Z. He, Z. W. Li, and A. Giua, “Optimization of deterministic timed weighted marked graphs,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 1084–1095, 2017. doi: 10.1109/TASE.2015.2490538
|
[30] |
Z. He, Z. W. Li, and A. Giua, “Cycle time optimization of deterministic timed weighted marked graphs by transformation,” IEEE Trans. Control Syst. Technol., vol. 25, no. 4, pp. 1318–1330, 2017. doi: 10.1109/TCST.2016.2613967
|
[31] |
Z. He, Z. W. Li, and A. Giua, “Performance optimization for timed weighted marked graphs under infinite server semantics,” IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2573–2580, 2018. doi: 10.1109/TAC.2017.2766202
|
[32] |
J. H. van Schuppen, M. Silva, and C. Seatzu, “Control of discrete-event systems-automata and Petri net perspectives,” Lect. Notes Control Infor. Sci., Springer, vol. 433, pp. 319–340, 2012.
|
[33] |
M. P. Cabasino, A. Giua, and C. Seatzu, “Identification of Petri nets from knowledge of their language,” Discrete Event Dyn. Syst., vol. 17, no. 4, pp. 447–474, 2007. doi: 10.1007/s10626-007-0025-0
|
[34] |
A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427, 1999. doi: 10.1016/S0005-1098(98)00178-2
|
[35] |
F. Basile, P. Chiacchio, and J. Coppola, “Identification of time Petri net models,” IEEE Trans. Syst.,Man,Cybern. A,Syst., vol. 47, no. 9, pp. 2586–2600, 2017. doi: 10.1109/TSMC.2016.2523929
|
[36] |
M. Tawarmalani and N. V. Sahinidis, “Global optimization of mixedinteger nonlinear programs: A theoretical and computational study,” Math. Program., vol. 99, no. 3, pp. 563–591, 2004. doi: 10.1007/s10107-003-0467-6
|
[37] |
Lindo Systems Inc., Lingo User’s Guide, 2011. [Online]. Available: http://www.lindo.com, Accessed on: Mar. 2017.
|
[38] |
F. Sessego, A. Giua, and C. Seatzu. “HYPENS: a Matlab tool for timed discrete, continuous and hybrid Petri nets,” in Proc. Int. Conf. Appl. Theor. Petri Nets, pp. 419–428, 2008.
|
[39] |
Z. He, Z. Y. Ma, and W. Tang. “Performance safety enforcement in strongly connected timed event graphs,” Automatica, under review, 2020.
|