IEEE/CAA Journal of Automatica Sinica
Citation: | Zhipeng Chen, Zhaohui Jiang, Chunjie Yang, Weihua Gui and Youxian Sun, "Dust Distribution Study at the Blast Furnace Top Based on k-Sε-up Model," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 121-135, Jan. 2021. doi: 10.1109/JAS.2020.1003468 |
[1] |
Y. Hashimoto, Y. Kitamura, and T. Ohashi, “Transient model-based operation guidance on BF,” Control Eng. Pract., vol. 82, pp. 130–141, Jan. 2019. doi: 10.1016/j.conengprac.2018.10.009
|
[2] |
Y. Zhang, P. Zhou, and G. M. Cui, “Multi-model based PSO method for burden distribution matrix optimization with expected burden distribution output behaviors,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1506–1512, Nov. 2019.
|
[3] |
Z. H. Yi, Z. P Chen, Z. H. Jiang, and W. H. Gui, “A novel three-dimensional high-temperature industrial endoscope with large field depth and wide field,” IEEE Trans. Instrum. Meas., pp. 1–1, Jan. 2020.
|
[4] |
F. Jin, J. Zhao, C. Y. Sheng, and W. Wang, “Causality diagram-based scheduling approach for blast furnace gas system,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 587–594, Mar. 2018. doi: 10.1109/JAS.2017.7510715
|
[5] |
J. D. Wei and X. Z. Chen, “Blast furnace gas flow strength prediction using FMCW radar,” ISIJ INT., vol. 55, pp. 600–604, Apr. 2015. doi: 10.2355/isijinternational.55.600
|
[6] |
M. Lateb, C. Masson, T. Stathopoulos, and C. Bédard, “Comparison of various types of k-ε models for pollutant emissions around a two-building configuration,” J. Wind. Eng. Ind. Aerod., vol. 115, pp. 9–21, Apr. 2013. doi: 10.1016/j.jweia.2013.01.001
|
[7] |
J. L. Li, H. W. Tang, and Y. T. Yang, “Numerical simulation and thermal performance optimization of turbulent flow in a channel with multi V-shaped baffles,” Int. Commun. Heat Mass, vol. 92, pp. 39–50, Mar. 2018. doi: 10.1016/j.icheatmasstransfer.2018.02.004
|
[8] |
H. Li, N. K. An, and Y. A. Hassan, “Computational study of turbulent flow interaction between twin rectangular jets,” Int. J. Heat Mass Tran., vol. 119, pp. 752–767, Apr. 2018. doi: 10.1016/j.ijheatmasstransfer.2017.12.008
|
[9] |
F. Afroz and M. A. R. Sharif, “Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface,” Appl. Therm. Eng., vol. 138, pp. 154–172, Jun. 2018. doi: 10.1016/j.applthermaleng.2018.04.007
|
[10] |
J. Fu, Y. Tang, J. X. Li, Y. Ma, W. Chen, and H. Li, “Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner,” Appl. Therm. Eng., vol. 93, pp. 397–404, Jan. 2016. doi: 10.1016/j.applthermaleng.2015.09.116
|
[11] |
S. Kumar, A. D. Kothiyal, M. S. Bisht, and A. Kumar, “Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage,” Results Phys., vol. 7, pp. 3603–3618, 2017. doi: 10.1016/j.rinp.2017.09.023
|
[12] |
K. Nakajima, R. Ooka, and H. Kikumoto, “Evaluation of k-ε Reynolds stress modeling in an idealized urban canyon using LES,” J. Wind Eng. Ind. Aerod., vol. 175, pp. 213–228, Apr. 2018. doi: 10.1016/j.jweia.2018.01.034
|
[13] |
M. Mößner and R. Radespiel, “Modelling of turbulent flow over porous media using a volume averaging approach and a Reynolds stress model,” Comput. Fluids., vol. 108, pp. 25–42, Feb. 2015. doi: 10.1016/j.compfluid.2014.11.024
|
[14] |
A. Yoshizawa, H. Abe, and Y. Matsuo, “A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate,” Phys. Fluids., vol. 24, pp. 075109-1–075109-21, Jul. 2012.
|
[15] |
R. H. Kraichnan, “An almost-Markovian Galilean-invariant turbulence model,” J. Fluid Mech., vol. 47, no. 3, pp. 513–524, Jun. 1971. doi: 10.1017/S0022112071001204
|
[16] |
A. Yoshizawa, “Statistical theory for the diffusion of a passive scalar in turbulent shear flows,” J. Phys. Soc. Jpn., vol. 53, no. 4, pp. 1264–1276, Apr. 1984. doi: 10.1143/JPSJ.53.1264
|
[17] |
Y. Shimomura, “A theoretical study of the turbulent diffusion in incompressible shear flows and in passive scalars,” Phys. Fluids, vol. 10, no. 10, pp. 2636–2646, Oct. 1998. doi: 10.1063/1.869776
|
[18] |
R. Rzehak and E. Krepper, “Euler-Euler simulation of mass-transfer in bubbly flows,” Chem. Eng. Sci., vol. 155, pp. 459–468, Nov. 2016. doi: 10.1016/j.ces.2016.08.036
|
[19] |
D. Gidaspow, “Multiphase flow and fluidization – continuum and kinetic theory description,” J. Non-Newton. Fluid, vol. 55, no. 3, pp. 207–208, Nov. 1994.
|
[20] |
P. J. Ireland and O. Desjardins, “Improving particle drag predictions in Euler-Lagrange simulations with two-way coupling,” J. Comput. Phys., vol. 338, pp. 405–430, Jun. 2017. doi: 10.1016/j.jcp.2017.02.070
|
[21] |
G. B. Schubauer and C. M. Tchen. Turbulent Flow, Princeton, Princeton University Press, 2016.
|
[22] |
L. X. Zhou, “Two-phase turbulence models in Eulerian-Eulerian simulation of gas-particle flows and coal combustion,” Procedia Engineering, vol. 102, pp. 1677–1696, 2015. doi: 10.1016/j.proeng.2015.01.304
|
[23] |
L. X. Zhou and T. Chen, “Simulation of swirling gas–particle flows using USM and k–ε–k p two-phase turbulence models,” Powder Technol., vol. 114, no. 1–3, pp. 1–11, Jan. 2001. doi: 10.1016/S0032-5910(00)00254-0
|
[24] |
A. I. J. Love, D. Giddings, and H. Power, “Gas-particle flow modeling: beyond the dilute limit,” Procedia Engineering, vol. 102, pp. 1426–1435, 2015. doi: 10.1016/j.proeng.2015.01.276
|
[25] |
C. P. Chen and P. E. Wood, “Turbulence closure modeling of two-phase flows,” Chem. Eng. Commun., vol. 29, no. 1, pp. 291–310, Aug. 1984.
|
[26] |
J. B. Jiang, L. B. Wang, and Z. M. Lu, “A new model for turbulent energy dissipation,” Int. J. Nonlin. Sci. Num., vol. 2, no. 3, pp. 277–282, Jan. 2001.
|
[27] |
X. F. Dong, D. Pinson, S. J. Zhang, A. B. Yu, and P. Zulli, “Gas-powder flow in blast furnace with different shapes of cohesive zone,” Appl. Math. Model, vol. 30, pp. 1293–1309, Apr. 2006. doi: 10.1016/j.apm.2006.03.004
|
[28] |
R. Rubinstein and Y. Zhou, “Analytical theory of the destruction terms in dissipation rate transport equations,” Phys. Fluids., vol. 8, no. 11, pp. 3172–3178, Nov. 1996. doi: 10.1063/1.869090
|
[29] |
Z. P. Chen, Z. H. Jiang, W. H. Gui, and C. H. Yang, “A novel device for optical imaging of blast furnace burden surface: parallel low-light-loss backlight high-temperature industrial endoscope,” IEEE Sens. J., vol. 16, pp. 6703–6717, Sep. 2016. doi: 10.1109/JSEN.2016.2587729
|