IEEE/CAA Journal of Automatica Sinica
Citation: | J. Mei, Z. Y. Lu, J. H. Hu, and Y. L. Fan, "Energy-Efficient Optimal Guaranteed Cost Intermittent-Switch Control of a Direct Expansion Air Conditioning System," IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1852-1866, Nov. 2021. doi: 10.1109/JAS.2020.1003447 |
[1] |
“Building and climate change,” The United Nations Environment Programme Sustainble Buildings and Climate Initiative (UNEP SBCI), Paris, France, Tech. Rep. CEDEX 09, 2009.
|
[2] |
Q. Wei, D. Liu, Y. Liu, and R. Song, “Optimal constrained self-learning battery sequential management in microgrid via adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 168–176, 2017. doi: 10.1109/JAS.2016.7510262
|
[3] |
D. Liu, Y. Xu, Q. Wei, and X. Liu, “Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 36–46, 2018. doi: 10.1109/JAS.2017.7510739
|
[4] |
B. Wang and X. Xia, “Optimal maintenance planning for building energy efficiency retrofitting from optimization and control system perspectives,” Energy and Buildings, vol. 96, pp. 299–308, 2015. doi: 10.1016/j.enbuild.2015.03.032
|
[5] |
X. Ye, X. Xia, L. Zhang, and B. Zhu, “Optimal maintenance planning for sustainable energy efficiency lighting retrofit projects by a control system approach,” Control Engineering Practice, vol. 37, pp. 1–10, 2015. doi: 10.1016/j.conengprac.2014.12.014
|
[6] |
Y. Fan and X. Xia, “A multi-objective optimization model for energyefficiency building envelope retrofitting plan with rooftop pv system installation and maintenance,” Applied Energy, vol. 189, pp. 327–335, 2017. doi: 10.1016/j.apenergy.2016.12.077
|
[7] |
B. P. Rasmussen and A. G. Alleyne, “Gain scheduled control of an air conditioning system using the youla parameterization,” IEEE Trans. Control Systems Technology, vol. 18, no. 5, pp. 1216–1225, 2010. doi: 10.1109/TCST.2009.2035104
|
[8] |
M. Ye and G. Hu, “Game design and analysis for price-based demand response: An aggregate game approach,” IEEE Trans. Cybernetics, vol. 47, no. 3, pp. 720–730, 2017. doi: 10.1109/TCYB.2016.2524452
|
[9] |
N. K. Dhar, N. K. Verma, and L. Behera, “Adaptive critic-based eventtriggered control for HVAC system,” IEEE Trans. Industrial Informatics, vol. 14, no. 1, pp. 178–188, 2018. doi: 10.1109/TII.2017.2725899
|
[10] |
Y. Xia, S. Deng, and M. Chan, “Inherent operational characteristics and operational stability of a variable speed direct expansion air conditioning system,” Applied Thermal Engineering, vol. 113, pp. 268–277, 2017. doi: 10.1016/j.applthermaleng.2016.10.073
|
[11] |
Z. Wu, Q. Jia, and X. Guan, “Optimal control of multiroom HVAC system: An event-based approach,” IEEE Trans. Control Systems Technology, vol. 24, no. 2, pp. 662–669, 2016.
|
[12] |
Y. Ma, J. Matuo, and F. Borrelli, “Stochastic model predictive control for building HVAC systems: Complexity and conservatism,” IEEE Trans. Control Systems Technology, vol. 23, no. 1, pp. 101–116, 2015. doi: 10.1109/TCST.2014.2313736
|
[13] |
W. Mai and C. Y. Chung, “Economic MPC of aggregating commercial buildings for providing flexible power reserve,” IEEE Trans. Power Systems, vol. 30, no. 5, pp. 2685–2694, 2015. doi: 10.1109/TPWRS.2014.2365615
|
[14] |
K. Zhou and L. Cai, “A dynamic water-filling method for real-time HVAC load control based on model predictive control,” IEEE Trans. Power Systems, vol. 30, no. 3, pp. 1405–1414, 2015. doi: 10.1109/TPWRS.2014.2340881
|
[15] |
G. Y. Yun, J. Choi, and J. T. Kim, “Energy performance of direct expansion air handling unit in office buildings,” Energy and Buildings, vol. 77, pp. 425–431, 2014. doi: 10.1016/j.enbuild.2014.03.039
|
[16] |
Q. Qi and S. Deng, “Multivariable control of indoor air temperature and humidity in a direct expansion (DX) air conditioning (A/C) system,” Building and Environment, vol. 44, no. 8, pp. 1659–1667, 2009. doi: 10.1016/j.buildenv.2008.11.001
|
[17] |
J. Mei and X. Xia, “Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system,” Applied Energy, vol. 195, pp. 439–452, 2017. doi: 10.1016/j.apenergy.2017.03.076
|
[18] |
J. Mei, X. Xia, and M. Song, “An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system,” Applied Energy, vol. 221, pp. 450–463, 2018. doi: 10.1016/j.apenergy.2018.03.162
|
[19] |
L. Xia, M. Chan, and S. Deng, “Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units,” Applied Energy, vol. 85, no. 12, pp. 1198–1207, 2008. doi: 10.1016/j.apenergy.2008.03.007
|
[20] |
J. Mei and X. Xia, “Distributed control for a multi-evaporator air conditioning system,” Control Engineering Practice, vol. 90, pp. 85–100, 2019. doi: 10.1016/j.conengprac.2019.06.017
|
[21] |
S. Chang and T. Peng, “Adaptive guaranteed cost control of systems with uncertain parameters,” IEEE Trans. Autom. Control, vol. 17, no. 4, pp. 474–483, 1972. doi: 10.1109/TAC.1972.1100037
|
[22] |
D. Liu, D. Wang, F. Wang, H. Li, and X. Yang, “Neural-networkbased online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems,” IEEE Trans. Cybernetics, vol. 44, no. 12, pp. 2834–2847, 2014. doi: 10.1109/TCYB.2014.2357896
|
[23] |
H. Li, J. Wang, L. Wu, H. Lam, and Y. Gao, “Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems,” IEEE Trans. Fuzzy Systems, vol. 26, no. 1, pp. 246–257, 2018. doi: 10.1109/TFUZZ.2017.2648855
|
[24] |
J. Mei, Z. Lu, J. Hu, and Y. Fan, “Guaranteed cost finite-time control of uncertain coupled neural networks, ” IEEE Trans. Cybernetics, to be published, Apr. 2020. DOI: 10.1109/TCYB.2020.2971265.
|
[25] |
J. Mei, M. Jiang, W. Xu, and B. Wang, “Finite-time synchronization control of complex dynamical networks with time delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 9, pp. 2462–2478, 2013. doi: 10.1016/j.cnsns.2012.11.009
|
[26] |
F. Yang, J. Mei, and Z. Wu, “Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control,” IET Control Theory Applications, vol. 10, no. 14, pp. 1630–1640, 2016. doi: 10.1049/iet-cta.2015.1326
|
[27] |
X. Liu and T. Chen, “Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control,” IEEE Trans. Neural Networks and Learning Systems, vol. 26, no. 1, pp. 113–126, 2015. doi: 10.1109/TNNLS.2014.2311838
|
[28] |
X. Wang, S. Li, and T. Tang, “Periodically intermittent cruise control of heavy haul train with uncertain parameters,” Journal of the Franklin Institute, vol. 356, no. 13, pp. 6989–7008, 2019. doi: 10.1016/j.jfranklin.2019.06.009
|
[29] |
Y. Fan, J. Mei, H. Liu, Y. Fan, F. Liu, and Y. Zhang, “Fast synchronization of complex networks via aperiodically intermittent sliding mode control,” Neural Processing Letters, vol. 51, pp. 1331–1352, 2020. doi: 10.1007/s11063-019-10145-2
|
[30] |
H. Chen, Z. I. Bell, P. Deptula, and W. E. Dixon, “A switched systems approach to path following with intermittent state feedback,” IEEE Trans. Robotics, vol. 35, no. 3, pp. 725–733, 2019. doi: 10.1109/TRO.2019.2899269
|
[31] |
W. Chen and S. Deng, “Development of a dynamic model for a DX VAV air conditioning system,” Energy Conversion and Management, vol. 47, no. 18, pp. 2900–2924, 2006.
|
[32] |
Q. Qi and S. Deng, “Multivariable control-oriented modeling of a direct expansion (DX) air conditioning (A/C) system,” Int. J. Refrigeration, vol. 31, no. 5, pp. 841–849, 2008. doi: 10.1016/j.ijrefrig.2007.10.009
|
[33] |
V. Vakiloroaya, B. Samali, and K. Pishghadam, “Investigation of energyefficient strategy for direct expansion air-cooled air conditioning systems,” Applied Thermal Engineering, vol. 66, no. 1, pp. 84–93, 2014.
|
[34] |
2004 Standard For Performance Rating of Positive Displacement Refrigerant Compressors and Compressor Units, ANSI/AHRI Standard 540, Arlington, VA 22201, USA, 2004.
|
[35] |
I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Systems &Control Letters, vol. 8, no. 4, pp. 351–357, 1987.
|
[36] |
S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, USA: Studies in Applied Mathematics (SIAM), 1994.
|
[37] |
L. Chen, Y. Zhou, and X. Zhang, “Guaranteed cost control for uncertain genetic regulatory networks with interval time-varying delays,” Neurocomputing, vol. 131, pp. 105–112, 2014. doi: 10.1016/j.neucom.2013.10.035
|
[38] |
A. Merola, C. Cosentino, D. Colacino, and F. Amato, “Optimal control of uncertain nonlinear quadratic systems,” Automatica, vol. 83, pp. 345–350, 2017. doi: 10.1016/j.automatica.2017.05.012
|
[39] |
S. Li, L. Yang, Z. Gao, and K. Li, “Optimal guaranteed cost cruise control for high-speed train movement,” IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 10, pp. 2879–2887, 2016. doi: 10.1109/TITS.2016.2527827
|