A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 2
Feb.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Chengdi Xiang, Shan Ma, Sen Kuang and Daoyi Dong, "Coherent H∞ Control for Linear Quantum Systems With Uncertainties in the Interaction Hamiltonian," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 432-440, Feb. 2021. doi: 10.1109/JAS.2020.1003429
Citation: Chengdi Xiang, Shan Ma, Sen Kuang and Daoyi Dong, "Coherent H Control for Linear Quantum Systems With Uncertainties in the Interaction Hamiltonian," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 432-440, Feb. 2021. doi: 10.1109/JAS.2020.1003429

Coherent H Control for Linear Quantum Systems With Uncertainties in the Interaction Hamiltonian

doi: 10.1109/JAS.2020.1003429
Funds:  This work was supported by the National Natural Science Foundation of China (61803132, 61828303, 61803389), the U.S. Office of Naval Research Global (N62909-19-1-2129), and the Australian Research’s Discovery Projects Funding Scheme under Project DP190101566
More Information
  • This work conducts robust H analysis for a class of quantum systems subject to perturbations in the interaction Hamiltonian. A necessary and sufficient condition for the robustly strict bounded real property of this type of uncertain quantum system is proposed. This paper focuses on the study of coherent robust H controller design for quantum systems with uncertainties in the interaction Hamiltonian. The desired controller is connected with the uncertain quantum system through direct and indirect couplings. A necessary and sufficient condition is provided to build a connection between the robust H control problem and the scaled H control problem. A numerical procedure is provided to obtain coefficients of a coherent controller. An example is presented to illustrate the controller design method.

     

  • loading
  • [1]
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.
    [2]
    H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control. Cambridge, U.K.: Cambridge University Press, 2010.
    [3]
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science, vol. 288, no. 5467, pp. 824–828, May 2000. doi: 10.1126/science.288.5467.824
    [4]
    D. D’Alessandro, Introduction to Quantum Control and Dynamics. London, U.K.: Chapman & Hall/CRC, 2007.
    [5]
    J. Zhang, R. B. Wu, Y. X. Liu, C. W. Li, and T. J. Tarn, “Quantum coherent nonlinear feedback with applications to quantum optics on chip,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 1997–2008, Aug. 2012. doi: 10.1109/TAC.2012.2195871
    [6]
    C. C. Shu, Y. Guo, K. J. Yuan, D. Dong, and A. D. Bandrau, “Attosecond all-optical control and visualization of quantum interference between degenerate magnetic states by circularly polarized pulses,” Opt. Lett., vol. 45, no. 4, pp. 960–963, 2020. doi: 10.1364/OL.386879
    [7]
    Y. Guo, C. C. Shu, D. Dong, and F. Nori, “Vanishing and revival of resonance Raman scattering,” Phys. Rev. Lett., vol. 123, no. 22, p. 223202, Nov. 2019. doi: 10.1103/PhysRevLett.123.223202
    [8]
    Y. Pan, D. Dong, and I. R. Petersen, “Dark modes of quantum linear systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4180–4186, Aug. 2017. doi: 10.1109/TAC.2017.2677878
    [9]
    Q. Gao, D. Dong, and I. R. Petersen, “Fault tolerant filtering and fault detection for quantum systems,” Automatica, vol. 71, pp. 125–134, Sept. 2016. doi: 10.1016/j.automatica.2016.04.045
    [10]
    R. B. Wu, H. Ding, D. Dong, and X. Wang, “Learning robust and highprecision quantum controls,” Phys. Rev. A, vol. 99, no. 4, p. 042327, Apr. 2019. doi: 10.1103/PhysRevA.99.042327
    [11]
    Y. Wang, D. Dong, A. Sone, I. R. Petersen, H. Yonezawa, and P. Cappellaro, “Quantum Hamiltonian identifiability via a similarity transformation approach and beyond,” IEEE Trans. Autom. Control, vol. 65, no. 12, pp. 4632–4647, Nov. 2020. doi: 10.1109/TAC.2020.2973582
    [12]
    Y. Wang, D. Dong, B. Qi, J. Zhang, I. R. Petersen, and H. Yonezawa, “A quantum Hamiltonian identification algorithm: Computational complexity and error analysis,” IEEE Trans. Autom. Control, vol. 63, no. 5, pp. 1388–1403, May 2018. doi: 10.1109/TAC.2017.2747507
    [13]
    Y. Guo, D. Dong, and C. C. Shu, “Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses,” Phys. Chem. Chem. Phys., vol. 20, no. 14, pp. 9498–9506, Mar. 2018. doi: 10.1039/C8CP00512E
    [14]
    S. Wang and D. Dong, “Fault-tolerant control of linear quantum stochastic systems,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2929–2935, Jun. 2017. doi: 10.1109/TAC.2016.2604303
    [15]
    C. Xiang, I. R. Petersen, and D. Dong, “Performance analysis and coherent guaranteed cost control for uncertain quantum systems using small gain and Popov methods,” IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1524–1529, Mar. 2017. doi: 10.1109/TAC.2016.2587383
    [16]
    H. J. Ding and R. B. Wu, “Robust quantum control against clock noises in multiqubit systems,” Phys. Rev. A, vol. 100, no. 2, p. 022302, Aug. 2019. doi: 10.1103/PhysRevA.100.022302
    [17]
    C. Wu, B. Qi, C. Chen, and D. Dong, “Robust learning control design for quantum unitary transformations,” IEEE Trans. Cybern., vol. 47, no. 12, pp. 4405–4417, Dec. 2017. doi: 10.1109/TCYB.2016.2610979
    [18]
    D. Dong, X. Xing, H. Ma, C. Chen, Z. Liu, and H. Rabitz, “Learning based quantum robust control: Algorithm, applications, and experiments,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3581–3593, Aug. 2020. doi: 10.1109/TCYB.2019.2921424
    [19]
    D. Dong, M. A. Mabrok, I. R. Petersen, B. Qi, C. Chen, and H. Rabitz, “Sampling-based learning control for quantum systems with uncertainties,” IEEE Trans. Control Syst. Technol., vol. 23, no. 6, pp. 2155–2166, Nov. 2015. doi: 10.1109/TCST.2015.2404292
    [20]
    C. Chen, D. Dong, R. Long, I. R. Petersen, and H. Rabitz, “Samplingbased learning control of inhomogeneous quantum ensembles,” Phys. Rev. A, vol. 89, no. 2, p. 023402, Feb. 2014. doi: 10.1103/PhysRevA.89.023402
    [21]
    D. Dong and I. R. Petersen, “Notes on sliding mode control of twolevel quantum systems,” Automatica, vol. 48, no. 12, pp. 3089–3097, Dec. 2012. doi: 10.1016/j.automatica.2012.08.020
    [22]
    B. Qi, “A two-step strategy for stabilizing control of quantum systems with uncertainties,” Automatica, vol. 49, no. 3, pp. 834–839, Mar. 2013. doi: 10.1016/j.automatica.2013.01.011
    [23]
    R. L. Kosut, M. D. Grace, and C. Brif, “Robust control of quantum gates via sequential convex programming,” Phys. Rev. A, vol. 88, no. 5, p. 052326, Nov. 2013. doi: 10.1103/PhysRevA.88.052326
    [24]
    A. Soare, H. Ball, D Hayes, J Sastrawan, M. C. Jarratt, J. J. McLoughlin, Z. Zhen, T. J. Green, and M. J. Biercuk, “Experimental noise filtering by quantum control,” Nat. Phys., vol. 10, pp. 825–829, Oct. 2014. doi: 10.1038/nphys3115
    [25]
    M. R. James, H. I. Nurdin, and I. R. Petersen, “H control of linear quantum stochastic systems,” IEEE Trans. Autom. Control, vol. 53, no. 8, pp. 1787–1803, Sept. 2008. doi: 10.1109/TAC.2008.929378
    [26]
    A. I. Maalouf and I. R. Petersen, “Coherent H control for a class of annihilation operator linear quantum systems,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 309–319, Feb. 2011. doi: 10.1109/TAC.2010.2052942
    [27]
    C. Xiang, I. R. Petersen, and D. Dong, “Coherent robust H control of linear quantum systems with uncertainties in the Hamiltonian and coupling operators,” Automatica, vol. 81, pp. 8–21, Jul. 2017. doi: 10.1016/j.automatica.2017.02.046
    [28]
    X. Lu and S. Kuang, “Coherent H control for linear quantum passive systems with model uncertainties,” IET Control Theory Appl., vol. 13, no. 5, pp. 711–720, Apr. 2019. doi: 10.1049/iet-cta.2018.6183
    [29]
    G. Zhang and M. R. James, “Direct and indirect couplings in coherent feedback control of linear quantum systems,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1535–1550, Jul. 2011. doi: 10.1109/TAC.2010.2096010
    [30]
    I. R. Petersen, V. Ugrinovskii, and M. R. James, “Robust stability of quantum systems with a nonlinear coupling operator,” in Proc. 51st IEEE CDC, Maui, USA, pp. 1078–1082, 2012.
    [31]
    C. Xiang, I. R. Petersen, and D. Dong, “Static and dynamic coherent robust control for a class of uncertain quantum systems,” Syst. Control Lett., vol. 141, p. 104702, Jul. 2020. doi: 10.1016/j.sysconle.2020.104702
    [32]
    A. Elahi, A. Alfi, and H. Modares, “H consensus control of discretetime multi-agent systems under network imperfections and external disturbance,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 667–675, May 2019. doi: 10.1109/JAS.2019.1911474
    [33]
    M. Zhou, Z. Cao, and Y. Wang, “Robust fault detection and isolation based on finite-frequency H–/H unknown input observers and zonotopic threshold analysis,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 750–759, May 2019. doi: 10.1109/JAS.2019.1911492
    [34]
    M. S. Mahmoud and G. D. Khan, “LMI consensus condition for discretetime multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 509–513, Mar. 2018. doi: 10.1109/JAS.2016.7510016
    [35]
    H. Song, G. Zhang, and Z. Xi, “Continuous-mode multiphoton filtering,” SIAM J. Control Optim., vol. 54, no. 3, pp. 1602–1632, Jun. 2016. doi: 10.1137/15M1023099
    [36]
    I. R. Petersen, “Quantum linear systems theory,” in Proc. 19th Int. Symp. MTNS, Budapest, Hungary, 2010.
    [37]
    C. T. Chen, Linear System Theory and Design. New York: Oxford University Press, 1999.
    [38]
    I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Syst. Control Lett., vol. 8, no. 4, pp. 351–357, Mar. 1987. doi: 10.1016/0167-6911(87)90102-2
    [39]
    I. R. Petersen and C. V. Hollot, “A Riccati equation approach to the stabilization of uncertain linear systems,” Automatica, vol. 22, no. 4, pp. 397–411, Jul. 1986. doi: 10.1016/0005-1098(86)90045-2
    [40]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM, 1994.
    [41]
    K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus. Berlin, Germany: Birkhauser, 1992.
    [42]
    C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” IEEE Trans. Autom. Control, vol. 42, no. 7, pp. 896–911, Jul. 1997. doi: 10.1109/9.599969
    [43]
    H. I. Nurdin, M. R. James, and I. R. Petersen, “Coherent quantum LQG control,” Automatica, vol. 45, no. 8, pp. 1837–1846, Aug. 2009. doi: 10.1016/j.automatica.2009.04.018
    [44]
    S. L. Vuglar and I. R. Petersen, “Quantum noise, physical realizability and coherent quantum feedback control,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 998–1003, Feb. 2017. doi: 10.1109/TAC.2016.2574641
    [45]
    H. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Weinheim, Germany: Wiley-VCH, 2004.
    [46]
    D.F. Walls and G. J. Milburn, Quantum Optics. Berlin/New York: Springer Verlag, 1994.
    [47]
    L. Cui, Z. Dong, G. Zhang, and H. W. J. Lee, “Mixed LQG and H coherent feedback control for linear quantum systems,” Int. J. Control, vol. 90, no. 12, pp. 2575–2588, Dec. 2016.
    [48]
    H. Mabuchi, “Coherent feedback quantum control with a dynamic compensator,” Phys. Rev. A, vol. 78, no. 3, p. 032323, Sept. 2008. doi: 10.1103/PhysRevA.78.032323
    [49]
    G. Zhang, S. Grivopoulos, I. R. Petersen, and J. E. Gough, “The Kalman decomposition for linear quantum systems,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 331–346, Feb. 2018. doi: 10.1109/TAC.2017.2713343

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1420) PDF downloads(55) Cited by()

    Highlights

    • This paper considers a class of quantum systems with uncertainties in the interaction Hamiltonian.
    • A necessary and sufficient condition for the robustly strict bounded real property of this type of uncertain quantum system is proposed.
    • A coherent robust controller design method via direct and indirect couplings is studied for this type of uncertain quantum system.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return