IEEE/CAA Journal of Automatica Sinica
Citation: | Wei He, Xinxing Mu, Liang Zhang and Yao Zou, "Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 148-156, Jan. 2021. doi: 10.1109/JAS.2020.1003417 |
[1] |
C. Li, Q. Shi, Z. H. Gao, M. C. Ma, Q. Huang, H. Ishii, A. Takanishi, and T. Fukuda, “Bioinspired phase-shift turning action for a biomimetic robot,” IEEE/ASME Trans. Mechatron., vol. 25, no. 1, pp. 84–94, Feb. 2020. doi: 10.1109/TMECH.2019.2959375
|
[2] |
Q. Shi, C. Li, K. Li, Q. Huang, H. Ishii, A. Takanishi, and T. Fukuda, “A modified robotic rat to study rat-like pitch and yaw movements,” IEEE/ASME Trans. Mechatron., vol. 23, no. 5, pp. 2448–2458, Oct. 2018. doi: 10.1109/TMECH.2018.2863269
|
[3] |
W. He, T. T. Wang, X. Y. He, L. J. Yang, and O. Kaynak, “Dynamical modeling and boundary vibration control of a rigid-flexible wing system,” IEEE/ASME Trans. Mechatron., 2020. DOI: 10.1109/TMECH.2020.2987963
|
[4] |
N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood, “Untethered flight of an insect-sized flapping-wing microscale aerial vehicle,” Nature, vol. 570, no. 7762, pp. 491–495, Jun. 2019. doi: 10.1038/s41586-019-1322-0
|
[5] |
X. B. Ji, X. C. Liu, V. Cacucciolo, M. Imboden, Y. Civet, A. El Haitami, S. Cantin, Y. Perriard, and H. Shea, “An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators,” Science Robotics, vol. 4, no. 37, pp. eaaz6451, Dec. 2019. doi: 10.1126/scirobotics.aaz6451
|
[6] |
G. Dimitriadis, “Finite wings,” in Introduction to Nonlinear Aeroelasticity, G. Dimitriadis. Chichester, UK: John Wiley & Sons, Ltd, 2017, pp. 503–553.
|
[7] |
D. Mackenzie, “A flapping of wings,” Science, vol. 335, no. 6075, pp. 1430–1433, Mar. 2012. doi: 10.1126/science.335.6075.1430
|
[8] |
B. Zhu, J. Z. Zhu, and Q. W. Chen, “A bio-inspired flight control strategy for a tail-sitter unmanned aerial vehicle,” Sci. China Inform. Sci., vol. 63, no. 7, pp. 170203, May 2020. doi: 10.1007/s11432-019-2764-1
|
[9] |
H. Y. Li, L. J. Wang, H. P. Du, and A. Boulkroune, “Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay,” IEEE Trans. Fuzzy Syst., vol. 25, no. 3, pp. 642–652, Jun. 2017. doi: 10.1109/TFUZZ.2016.2567457
|
[10] |
M. Keennon, K. Klingebiel, H. Won, and A. Andriukov, “Tailless flapping wing propulsion and control development for the nano hummingbird micro air vehicle,” in The American Helicopter Society 68th Annual Forum, Fort Worth, USA, 2012.
|
[11] |
A. Ramezani, S. J. Chung, and S. Hutchinson, “A biomimetic robotic platform to study flight specializations of bats,” Sci. Robot., vol. 2, no. 3, pp. eaal2505, Feb. 2017. doi: 10.1126/scirobotics.aal2505
|
[12] |
B. Wong, “Lab bench-new robot designs are for the birds,” Electronic Design, vol. 59, no. 6, pp. 14, 2011.
|
[13] |
D. S. Farner, “Dimensional relationships for flying animals. Crawford H. Greenewalt,” Auk, vol. 78, no. 4, pp. 653–654, Oct. 1961.
|
[14] |
Q. V. Nguyen, W. L. Chan, and M. Debiasi, “Hybrid design and performance tests of a hovering insect-inspired flapping-wing micro aerial vehicle,” J. Bionic Eng., vol. 13, no. 2, pp. 235–248, Jun. 2016. doi: 10.1016/S1672-6529(16)60297-4
|
[15] |
A. Hedenström, “Aerodynamics, evolution and ecology of avian flight,” Trends Ecol. Evol., vol. 17, no. 9, pp. 415–422, Sep. 2002. doi: 10.1016/S0169-5347(02)02568-5
|
[16] |
B. W. Tobalske, T. L. Hedrick, K. P. Dial, and A. A. Biewener, “Comparative power curves in bird flight,” Nature, vol. 421, no. 6921, pp. 363–366, Jan. 2003. doi: 10.1038/nature01284
|
[17] |
C. G. Yang, C. Z. Chen, N. Wang, Z. J. Ju, J. Fu, and M. Wang, “Biologically inspired motion modeling and neural control for robot learning from demonstrations,” IEEE Trans. Cogn. Dev. Syst., vol. 11, no. 2, pp. 281–291, Jun. 2019. doi: 10.1109/TCDS.2018.2866477
|
[18] |
A. L. R. Thomas, “On the aerodynamics of birds’ tails,” Phil. Trans. R. Soc. Lond. B:Biol. Sci., vol. 340, no. 1294, pp. 361–380, Jun. 1993. doi: 10.1098/rstb.1993.0079
|
[19] |
G. P. He, T. T. Su, T. M. Jia, L. Zhao, and Q. L. Zhao, “Dynamics analysis and control of a bird scale underactuated flapping-wing vehicle,” IEEE Trans. Control Syst. Technol., vol. 28, no. 4, pp. 1233–1242, Jul. 2020. doi: 10.1109/TCST.2019.2908145
|
[20] |
A. R. Shanmugam and C. H. Sohn, “Systematic investigation of a flapping wing in inclined stroke-plane hovering,” J. Braz. Soc. Mech. Sci. Eng., vol. 41, no. 8, pp. 347, Jul. 2019. doi: 10.1007/s40430-019-1840-6
|
[21] |
G. Xie, A. Q. Shangguan, R. Fei, W. J. Ji, W. G. Ma, and X. H. Hei, “Motion trajectory prediction based on CNN-LSTM sequential model,” Sci. China Inform. Sciences, 2020. DOI: 10.1007/s11432-019-2761-y
|
[22] |
M. Bortolini, M. Faccio, F. G. Galizia, M. Gamberi, and F. Pilati, “Design, engineering and testing of an innovative adaptive automation assembly system,” Assembly Autom., vol. 40, no. 3, pp. 531–540, Feb. 2020. doi: 10.1108/AA-06-2019-0103
|
[23] |
H. Qiao, M. Wang, J. H. Su, S. X. Jia, and R. Li, “The concept of ‘attractive region in environment’ and its application in high-precision tasks with low-precision systems,” IEEE/ASME Trans. Mechatron., vol. 20, no. 5, pp. 2311–2327, Oct. 2015. doi: 10.1109/TMECH.2014.2375638
|
[24] |
W. He, S. X. Nie, T. T. Meng, and Y. J. Liu, “Modeling and vibration control for a moving beam with application in a drilling riser,” IEEE Trans. Control Syst. Technol., vol. 25, no. 3, pp. 1036–1043, May 2017. doi: 10.1109/TCST.2016.2577001
|
[25] |
S. Tijmons, C. De Wagter, B. Remes, and G. de Croon, “Autonomous door and corridor traversal with a 20-gram flapping wing MAV by onboard stereo vision,” Aerospace, vol. 5, no. 3, pp. 69, Jun. 2018. doi: 10.3390/aerospace5030069
|
[26] |
F. Fei, Z. Tu, J. Zhang, and X. Y. Deng, Learning extreme hummingbird maneuvers on flapping wing robots. 2019. [Online]. Available: arXiv: 1902.09626.
|
[27] |
W. He, Z. C. Yan, C. Y. Sun, and Y. Chen, “Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer,” IEEE Trans. Cybernet., vol. 47, no. 10, pp. 3452–3465, Oct. 2017. doi: 10.1109/TCYB.2017.2720801
|
[28] |
H. V. Phan, T. Kang, and H. C. Park, “Design and stable flight of a 21g insect-like tailless flapping wing micro air vehicle with angular rates feedback control,” Bioinspir. Biomim., vol. 12, no. 3, pp. 036006, Apr. 2017. doi: 10.1088/1748-3190/aa65db
|
[29] |
A. Ailon, “Simple tracking controllers for autonomous VTOL aircraft with bounded inputs,” IEEE Trans. Autom. Control, vol. 55, no. 3, pp. 737–743, Mar. 2010. doi: 10.1109/TAC.2010.2040493
|
[30] |
V. A. Tucker, “Pitching equilibrium, wing span and tail span in a gliding Harris’ hawk, parabuteo unicinctus,” J. Exp. Biol., vol. 165, no. 4, pp. 21–41, Jan. 1992.
|
[31] |
I. Fenercioglu and O. Cetiner, “Effect of unequal flapping frequencies on flow structures,” Aerosp. Sci. Technol., vol. 35, pp. 39–53, May 2014. doi: 10.1016/j.ast.2014.02.007
|
[32] |
M. V. OL, J. D. Eldredge, and C. J. Wang, “High-amplitude pitch of a flat plate: an abstraction of perching and flapping,” Int. J. Micro Air Veh., vol. 1, no. 3, pp. 203–216, Nov. 2009. doi: 10.1260/175682909789996186
|
[33] |
J. H. Kim, C. Y. Park, S. M. Jun, D. K. Chung, H. C. Hwang, P. Beran and D. Mrozinski, “Flight test measurement and assessment of a flapping micro air vehicle,” Int. J. Aeronaut. Space Sci., vol. 13, no. 2, pp. 238–249, Jun. 2012. doi: 10.5139/IJASS.2012.13.2.238
|
[34] |
D. Mueller, H. A. Bruck, and S. K. Gupta, “Measurement of thrust and lift forces associated with drag of compliant flapping wing for micro air vehicles using a new test stand design,” Exp. Mech., vol. 50, no. 6, pp. 725–735, Jul. 2010. doi: 10.1007/s11340-009-9270-5
|
[35] |
A. Banazadeh and N. Taymourtash, “Adaptive attitude and position control of an insect-like flapping wing air vehicle,” Nonlinear Dyn., vol. 85, no. 1, pp. 47–66, Jul. 2016. doi: 10.1007/s11071-016-2666-8
|
[36] |
S. M. Nogar, A. Serrani, A. Gogulapati, J. J. McNamara, M. W. Oppenheimer, and D. B. Doman, “Design and evaluation of a model-based controller for flapping-wing micro air vehicles,” J. Guid. Control Dyn., vol. 41, no. 12, pp. 2513–2528, Dec. 2018. doi: 10.2514/1.G003293
|
[37] |
M. H. Dickinson, F. O. Lehmann, and S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” Science, vol. 284, no. 5422, pp. 1954–1960, Jun. 1999. doi: 10.1126/science.284.5422.1954
|
[38] |
M. Pachter, J. J. D’Azzo, and A. W. Proud, “Tight formation flight control,” J. Guid. Control Dyn., vol. 24, no. 2, pp. 246–254, Mar.-Apr. 2001. doi: 10.2514/2.4735
|
[39] |
H. W. Lin, B. Zhao, D. R. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
|
[40] |
B. Xu, Y. X. Shou, J. Luo, H. Y. Pu, and Z. K. Shi, “Neural learning control of strict-feedback systems using disturbance observer,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 5, pp. 1296–1307, May 2019. doi: 10.1109/TNNLS.2018.2862907
|
[41] |
S. L. Dai, S. D. He, M. Wang, and C. Z. Yuan, “Adaptive neural control of underactuated surface vessels with prescribed performance guarantees,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3686–3698, Dec. 2019. doi: 10.1109/TNNLS.2018.2876685
|
[42] |
J. Z. Zhang and C. X. Xu, “Trust region dogleg path algorithms for unconstrained minimization,” Ann. Oper. Res., vol. 87, pp. 407–418, Apr. 1999. doi: 10.1023/A:1018957708498
|
[43] |
H. J. Yang and J. K. Liu, “An adaptive RBF neural network control method for a class of nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 457–462, Mar. 2018. doi: 10.1109/JAS.2017.7510820
|
[44] |
B. Zhu and W. Huo, “Nonlinear control for a model-scaled helicopter with constraints on rotor thrust and fuselage attitude,” Acta Autom. Sinica, vol. 40, no. 11, pp. 2654–2664, Nov. 2014. doi: 10.1016/S1874-1029(14)60411-0
|