IEEE/CAA Journal of Automatica Sinica
Citation: | G. J. Wang, J. Wu, R. He, and B. Tian, "Speed and Accuracy Tradeoff for LiDAR Data Based Road Boundary Detection," IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1210-1220, Jun. 2021. doi: 10.1109/JAS.2020.1003414 |
[1] |
F. Oniga, S. Nedevschi, and M. Michael Meinecke, “Curb detection based on a multi-frame persistence map for urban driving scenarios,” in Proc. IEEE Conf. Intelligent Transportation Systems, 2008, pp. 67–72.
|
[2] |
J. Siegemund, D. Pfeiffer, U. Franke, and W. Forstner, “Curb reconstruction using conditional random fields,” in Proc. IEEE Conf. Intelligent Vehicles Symposium, 2010, pp. 203–210.
|
[3] |
L. Wang, T. Wu, Z. Xiao, L. Xiao, D. Zhao, and J. Han, “Multi-cue road boundary detection using stereo vision,” in Proc. IEEE Conf. Vehicular Electronics and Safety, 2016, pp. 48–53.
|
[4] |
Y. Kang, C. Roh, S. Suh, and B. Song, “A LiDAR-based decision-making method for road boundary detection using multiple Kalman filters,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4360–4368, Nov. 2012. doi: 10.1109/TIE.2012.2185013
|
[5] |
J. Han, D. Kim, M. Lee, and M. Sunwoo, “Road boundary detection and tracking for structured and unstructured roads using a 2D LiDAR sensor,” Int. Journal of Automotive Technology, vol. 15, no. 4, pp. 611–623, 2014. doi: 10.1007/s12239-014-0064-0
|
[6] |
M. Buehler, K. Iagnemma, and S. Singh, “Junior: The Stanford Entry in the Urban Challenge,” in The DARPA urban challenge: autonomous vehicles in city traffic, vol. 56, Berlin, Heidelberg, Germany: Springer, 2009, pp. 91–123.
|
[7] |
G. Seetharaman, A. Lakhotia, and E. Blasch, “Unmanned vehicles come of age: The DARPA grand challenge,” IEEE Computer Society, vol. 39, no. 12, pp. 26–29, 2006. doi: 10.1109/MC.2006.447
|
[8] |
S. Verghese, “Self-driving cars and LiDAR,” in Proc. Conf. on Lasers and Electro-Optics, California, USA, 2017, pp. AM3A-1.
|
[9] |
J. Fang, F. Yan, T. Zhao, F. Zhang, D. Zhou, R. Yang, Y. Ma, and L. Wang, “Simulating LiDAR Point Cloud for Autonomous Driving using Real-world Scenes and Traffic Flows,” arXiv: 1811.07112, 2018.
|
[10] |
K. Bimbraw, “Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology,” in Proc. Int. Conf. on Informatics in Control, Automation and Robotics, 2015, pp. 191–198.
|
[11] |
P. Sun, X. Zhao, Z. Xu, and H. Min, “Urban curb robust detection algorithm based on 3D-LiDAR,” Journal of ZheJiang University, vol. 52, no. 3, pp. 504–514, Mar. 2018.
|
[12] |
K. Hu, T. Wang, Z. Li, D. Chen, and X. Li, “Real-time extraction method of road boundary based on three-dimensional LiDAR,” Journal of Physics:Conf. Series, vol. 1074, no. 1, pp. 1–8, 2018.
|
[13] |
W. Yao, Z. Deng, and L. Zhou, “Road curb detection using 3D LiDAR and integral laser points for intelligent vehicles,” Soft Computing and Intelligent Systems (SCIS)and 13th Int. Symp. on Advanced Intelligent Systems (ISIS)
|
[14] |
B. Yang, L. Fang, and J. Li, “Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 79, pp. 80–93, 2013. doi: 10.1016/j.isprsjprs.2013.01.016
|
[15] |
A. Y. Hata and D. F. Wolf, “Feature detection for vehicle localization in urban environments using a multilayer LiDAR,” IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 2, pp. 420–429, 2016. doi: 10.1109/TITS.2015.2477817
|
[16] |
S. Xu, R. Wang, and H. Zheng, “Road Curb Extraction from Mobile LiDAR Point Clouds,” IEEE Trans. Geoscience and Remote Sensing, vol. 55, no. 2, pp. 996–1009, 2017. doi: 10.1109/TGRS.2016.2617819
|
[17] |
D. Zai, J. Li, Y. Guo, M. Cheng, and Y. Lin, “3D road boundary extraction from mobile laser scanning data via supervoxels and graph cuts,” IEEE Trans. Intelligent Transportation Systems., vol. 19, no. 3, pp. 802–813, 2018. doi: 10.1109/TITS.2017.2701403
|
[18] |
M. Wu, Z. Liu, and Z. Ren, “Algorithm of real-time road boundary detection based on 3D LiDAR,” Journal of Huazhong University of Science and Technology (Natural Science Edition)
|
[19] |
G. Wang, J. Wu, R. He, and S. Yang, “A Point Cloud-Based Robust Road Curb Detection and Tracking Method,” IEEE Access, vol. 7, pp. 24611–24625, 2019. doi: 10.1109/ACCESS.2019.2898689
|
[20] |
P. Sun, X. Zhao, Z. Xu, R. Wang, and H. Min, “A 3D LiDAR Data-Based Dedicated Road Boundary Detection Algorithm for Autonomous Vehicles,” IEEE Access, vol. 7, pp. 29623–29638, 2019. doi: 10.1109/ACCESS.2019.2902170
|
[21] |
P. Kumar, C. P. McElhinney, P. Lewis, and T. McCarthy, “An automated algorithm for extracting road edges from terrestrial mobile LiDAR data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 85, pp. 44–55, 2013. doi: 10.1016/j.isprsjprs.2013.08.003
|
[22] |
H. Wang, H. Luo, C. Wen, J. Cheng, and P. Li, “Road Boundaries Detection Based on Local Normal Saliency from Mobile Laser Scanning Data,” IEEE Geoscience Remote Sensing Letters, vol. 12, no. 10, pp. 2085–2089, 2015. doi: 10.1109/LGRS.2015.2449074
|
[23] |
M. Yadav, A. K. Singh, and B. Lohani, “Extraction of road surface from mobile LiDAR data of complex road environment,” Int. Journal of Remote Sensing, vol. 38, no. 16, pp. 4655–4682, 2017. doi: 10.1080/01431161.2017.1320451
|
[24] |
Z. Liu, J. Wang, and D. Liu, “A new curb detection method for unmanned ground vehicles using 2D sequential laser data,” Sensors, vol. 13, no. 1, pp. 1102–1120, 2013. doi: 10.3390/s130101102
|
[25] |
Velodyne. (2019). HDL-64E. [Online]. Available: https://velodynelidar.com/hdl-64e.html, Accessed on: Apr. 16, 2020.
|
[26] |
M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. doi: 10.1145/358669.358692
|
[27] |
Y. Zhang, J. Wang, X. Wang, and J. Dolan, “Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR sensor,” IEEE Trans. Intelligent Transportation System, vol. 19, no. 12, pp. 3981–3991, Dec. 2018. doi: 10.1109/TITS.2018.2789462
|
[28] |
J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” in Proc. Conf. Robotics: Science and Systems, 2014.
|
[29] |
S. Thrun, W. Burgard, and D. Fox, “Robot Perception,” in Probabilistic Robotics, London, England: MIT press, 2005, pp. 149–187. [Online]. Available: https://mitpress.mit.edu/books/probabilistic-robotics.
|
[30] |
J. Hu, A. Razdan, JC. Femiani, M Cui, and P. Wonka, “Road network extraction and intersection detection from aerial images by tracking road footprints,” IEEE Trans. Geoscience and Remote Sensing, vol. 45, no. 12, pp. 4144–4157, 2007. doi: 10.1109/TGRS.2007.906107
|
[31] |
Wikipedia, “Median filter,” The Free Encyclopedia, USA. [Online]. Available: https://en.wikipedia.org/wiki/Median_filter, Accessed on: Nov. 5, 2019.
|
[32] |
T. Chen, B. Dai, D. Liu, J. Song, and Z. Liu, “Velodyne-based curb detection up to 50 meters away,” in Proc. IEEE Conf. Intelligent Vehicles Symp., 2015, pp. 241–248.
|
[33] |
C. K. Williams and C. E. Rasmussen, “Regression,” in Gaussian Processes for Machine Learning, London, UK: MIT press, 2006.
|
[34] |
B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and A. Frenkel, “On the segmentation of 3D LiDAR point clouds.” in Proc. Conf. Robotics and Automation, 2011, pp. 2798–2805.
|
[35] |
A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite.” in Proc. Conf. Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.
|
[36] |
J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences,” in Proc. IEEE Conf. Computer Vision, 2019, pp. 9297–9307.
|
[37] |
Powers and D. Martin, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, Feb. 2011.
|
[38] |
Y. Sasaki, “The truth of the F-measure,” Teach Tutor mater, vol. 1, no. 5, pp. 1–5, 2007.
|