IEEE/CAA Journal of Automatica Sinica
Citation: | K. Zhang, Y. K. Su, X. W. Guo, L. Qi, and Z. B. Zhao, "MU-GAN: Facial Attribute Editing Based on Multi-Attention Mechanism," IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1614-1626, Sep. 2021. doi: 10.1109/JAS.2020.1003390 |
[1] |
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv: 1312.6114, 2013.
|
[2] |
X. Wang, Z. Ning, M. Zhou, X. Hu, L. Wang, Y. Zhang, F. R. Yu, and B. Hu, “Privacy-preserving content dissemination for vehicular social networks: Challenges and solutions,” IEEE Communications Surveys &Tutorials, vol. 21, no. 2, pp. 1314–1345, 2018.
|
[3] |
Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Attgan: Facial attribute editing by only changing what you want,” IEEE Trans. Image Processing, vol. 28, no. 11, pp. 5464–5478, 2019. doi: 10.1109/TIP.2019.2916751
|
[4] |
M. Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-toimage translation networks, ” in Proc. Advances Neural Information Processing Systems, Long Beach, USA, 2017, pp. 700–708.
|
[5] |
G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, and M. Ranzato, “Fader networks: Manipulating images by sliding attributes, ” in Proc. Advances Neural Information Processing Systems, Long Beach, USA, 2017, pp. 5967–5976.
|
[6] |
P. Li, Y. Hu, R. He, and Z. Sun, “Global and local consistent wavelet-domain age synthesis,” IEEE Trans. Information Forensics and Security, vol. 14, no. 11, pp. 2943–2957, 2019. doi: 10.1109/TIFS.2019.2907973
|
[7] |
H. Yang, D. Huang, Y. Wang, and A. K. Jain, “Learning face age progression: A pyramid architecture of gans, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 31–39.
|
[8] |
H. Dong, P. Neekhara, C. Wu, and Y. Guo, “Unsupervised image-to-image translation with generative adversarial networks, ” arXiv preprint arXiv: 1701.02676, 2017.
|
[9] |
A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and F. Moreno-Noguer, “Ganimation: Anatomically-aware facial animation from a single image,” in Proc. European Conf. Computer Vision, Munich, Germany, 2018, pp. 818–833.
|
[10] |
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks, ” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 2223–2232.
|
[11] |
Y. Choi, M. Choi, M. Kim, J. W. Ha, S. Kim, and J. Choo, “Stargan: Unified generative adversarial networks for multidomain image-to-image translation, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 8789–8797.
|
[12] |
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 770–778.
|
[13] |
K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual networks of residual networks: Multilevel residual networks,” IEEE Trans. Circuits and Systems for Video Technology, vol. 28, no. 6, pp. 1303–1314, 2017.
|
[14] |
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation, ” in Proc. Int. Conf. on Medical Image Computing and Computerassisted Intervention, Munich, Germany, 2015, pp. 234–241.
|
[15] |
M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen, “Stgan: A unified selective transfer network for arbitrary image attribute editing,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 3673–3682.
|
[16] |
L. Chen, X. Hu, W. Tian, H. Wang, D. Cao, and F. Y. Wang, “Parallel planning: A new motion planning framework for autonomous driving,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1, pp. 236–246, 2018.
|
[17] |
H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Selfattention generative adversarial networks, ” arXiv preprint arXiv: 1805.08318, 2018.
|
[18] |
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv: 1701.07875, 2017.
|
[19] |
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” in Proc. Advances Neural Information Processing Systems, Long Beach, USA, 2017, pp. 5767–5777.
|
[20] |
X. Wang, Q. Kang, J. An, and M. Zhou, “Drifted twitter spam classification using multiscale detection test on KL divergence,” IEEE Access, vol. 7, pp. 108 384–108 394, 2019. doi: 10.1109/ACCESS.2019.2932018
|
[21] |
M. Mirza and S. Osindero, “Conditional generative adversarial nets, ” arXiv preprint arXiv: 1411.1784, 2014.
|
[22] |
A. Odena, “Semi-supervised learning with generative adversarial networks, ” arXiv preprint arXiv: 1606.01583, 2016.
|
[23] |
A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier gans, ” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 2642–2651.
|
[24] |
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial text to image synthesis, ” in Proc. 33th Int. Conf. Machine Learning, New York, USA, 2016, pp. 1060–1069.
|
[25] |
H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks, ” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 5907–5915.
|
[26] |
Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras, “Neural face editing with intrinsic image disentangling, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii, USA, 2017, pp. 5541–5550.
|
[27] |
Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised crossdomain image generation, ” arXiv preprint arXiv: 1611.02200, 2016.
|
[28] |
T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain relations with generative adversarial networks, ” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 1857–1865.
|
[29] |
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Z. Shi, “Photo-realistic single image super-resolution using a generative adversarial network, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii, USA, 2017, pp. 4681–4690.
|
[30] |
B. Xu, L. Ma, L. Zhang, H. Li, Q. Kang, and M. Zhou, “An adaptive wordpiece language model for learning chinese word embeddings, ” in Proc. IEEE 15th Int. Conf. Automation Science and Engineering. IEEE, 2019, pp. 812–817.
|
[31] |
S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–614, 2018.
|
[32] |
X. Guo, M. Zhou, S. Liu, and L. Qi, “Lexicographic multiobjective scatter search for the optimization of sequencedependent selective disassembly subject to multiresource constraints,” IEEE Transactions on Cybernetics, vol. 50, no. 7, pp. 3307–3317, 2020. doi: 10.1109/TCYB.2019.2901834
|
[33] |
X. Guo, S. Liu, M. Zhou, and G. Tian, “Dual-objective program and scatter search for the optimization of disassembly sequences subject to multiresource constraints,” IEEE Trans. Automation Science and Engineering, vol. 15, no. 3, pp. 1091–1103, 2017.
|
[34] |
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets, ” in Proc. Advances in Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672–2680.
|
[35] |
K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang, “Generative adversarial networks: introduction and outlook,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4, pp. 588–598, 2017. doi: 10.1109/JAS.2017.7510583
|
[36] |
G. J. Qi, “Loss-sensitive generative adversarial networks on lipschitz densities,” Int. Journal of Computer Vision, vol. 128, no. 5, pp. 1118–1140, 2020. doi: 10.1007/s11263-019-01265-2
|
[37] |
M. Y. Liu and O. Tuzel, “Coupled generative adversarial networks, ” in Proc. Advances Neural Information Processing Systems, Barcelona Spain, 2016, pp. 469–477.
|
[38] |
A. Almahairi, S. Rajeshwar, A. Sordoni, P. Bachman, and A. Courville, “Augmented cyclegan: Learning many-to-many mappings from unpaired data, ” in Proc. 35th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 195–204.
|
[39] |
P. Xiang, L. Wang, F. Wu, J. Cheng, and M. Zhou, “Singleimage de-raining with feature-supervised generative adversarial network,” IEEE Signal Processing Letters, vol. 26, no. 5, pp. 650–654, 2019. doi: 10.1109/LSP.2019.2903874
|
[40] |
S. Zhou, T. Xiao, Y. Yang, D. Feng, Q. He, and W. He, “Genegan: Learning object transfiguration and attribute subspace from unpaired data, ” arXiv preprint arXiv: 1705.04932, 2017.
|
[41] |
T. Xiao, J. Hong, and J. Ma, “Dna-gan: learning disentangled representations from multi-attribute images, ” arXiv preprint arXiv: 1711.05415, 2017.
|
[42] |
G. Perarnau, J. Van De Weijer, B. Raducanu, and J. M. Álvarez, “Invertible conditional gans for image editing, ” arXiv preprint arXiv: 1611.06355, 2016.
|
[43] |
P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-toimage translation with conditional adversarial networks, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii, USA, 2017, pp. 1125–1134.
|
[44] |
Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild, ” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 3730–3738.
|
[45] |
X. Guo, S. Liu, M. Zhou, and G. Tian, “Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and petri nets,” IEEE Trans. Cybernetics, vol. 46, no. 11, pp. 2435–2446, 2015.
|
[46] |
G. Cai, Y. Wang, L. He, and M. Zhou, “Unsupervised domain adaptation with adversarial residual transform networks, ” IEEE Trans. Neural Networks and Learning Systems, 2019, to be published. DOI: 10.1109/TNNLS.2019.2935384.
|
[47] |
X. Hu, J. Cheng, M. Zhou, B. Hu, X. Jiang, Y. Guo, K. Bai, and F. Wang, “Emotion-aware cognitive system in multi-channel cognitive radio ad hoc networks,” IEEE Communications Magazine, vol. 56, no. 4, pp. 180–187, 2018. doi: 10.1109/MCOM.2018.1700728
|
[48] |
K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation, ” in Proc. Conf. Empirical Methods Natural Language Processing, Doha, Qatar, 2014, p. 1724–1734.
|
[49] |
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735
|
[50] |
E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 441–451, 2019. doi: 10.1109/JAS.2019.1911393
|
[51] |
K. Zhang, N. Liu, X. Yuan, X. Guo, C. Gao, Z. Zhao, and Z. Ma, “Fine-grained age estimation in the wild with attention lstm networks, ” IEEE Trans. Circuits and Systems for Video Technology, 2019, to be published. DOI: 10.1109/TCSVT.2019.2936410.
|
[52] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need, ” in Proc. Advances Neural Information Processing Systems, Long Beach, USA, 2017, pp. 5998–6008.
|
[53] |
X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks, ” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 7794–7803.
|