IEEE/CAA Journal of Automatica Sinica
Citation: | Ting Wang, Xiaoquan Xu and Xiaoming Tang, "Scalable Clock Synchronization Analysis: A Symmetric Noncooperative Output Feedback Tubes-MPC Approach," IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1604-1626, Nov. 2020. doi: 10.1109/JAS.2020.1003363 |
[1] |
J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Comput. Netw., vol. 52, no. 12, pp. 2292–2330, Aug. 2008. doi: 10.1016/j.comnet.2008.04.002
|
[2] |
S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor networks,” in Proc. 1st Int. Conf. Embedded Networked Sensor Systems, Los Angeles, USA, 2003, pp. 138-149.
|
[3] |
J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using reference broadcasts,” in Proc. 5th Symp. Operating Systems Design and Implementation, Boston, USA, 2002, pp. 147-163.
|
[4] |
M. Maróti, B. Kusy, G. Simon, Á. Lédeczi, “The flooding time synchronization protocol,” in Proc. 2nd Int. Conf. Embedded Networked Sensor Systems, Baltimore, USA, 2004, pp. 39-49.
|
[5] |
L. Schenato, and F. Fiorentin, “Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks,” Automatica, vol. 47, no. 9, pp. 1878–1886, Jan. 2011. doi: 10.1016/j.automatica.2011.06.012
|
[6] |
S. Ahmed, F. Xiao, and T. W. Chen, “Asynchronous consensus-based time synchronisation in wireless sensor networks using unreliable communication links,” IET Control Theory Appl., vol. 8, no. 12, pp. 1083–1090, Aug. 2014. doi: 10.1049/iet-cta.2013.0859
|
[7] |
J. P. He, P. Cheng, L. Shi, J. M. Chen, and Y. X. Sun, “Time synchronization in WSNs: A maximum-value-based consensus approach,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 660–675, Mar. 2014. doi: 10.1109/TAC.2013.2286893
|
[8] |
E. Garone, A. Gasparri, and F. Lamonaca, “Clock synchronization protocol for wireless sensor networks with bounded communication delays,” Automatica, vol. 59, pp. 60–72, Sep. 2015. doi: 10.1016/j.automatica.2015.06.014
|
[9] |
S. Bolognani, R. Carli, E. Lovisari, and S. Zampieri, “A randomized linear algorithm for clock synchronization in multi-agent systems,” IEEE Trans. Autom. Control, vol. 61, no. 7, pp. 1711–1726, Jul. 2016. doi: 10.1109/TAC.2015.2479136
|
[10] |
F. Lamonaca, A. Gasparri, E. Garone, and D. Grimaldi, “Clock synchronization in wireless sensor network with selective convergence rate for event driven measurement applications,” IEEE Trans. Instrum. Meas., vol. 63, no. 9, pp. 2279–2287, Feb. 2014. doi: 10.1109/TIM.2014.2304867
|
[11] |
Y. C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of wireless sensor networks,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 124–138, Jan. 2011. doi: 10.1109/MSP.2010.938757
|
[12] |
B. Luo and Y. C. Wu, “Distributed clock parameters tracking in wireless sensor network,” IEEE Trans. Wirel. Commun., vol. 12, no. 12, pp. 6464–6475, Dec. 2013. doi: 10.1109/TWC.2013.103013.130811
|
[13] |
D. P. Li, Y. J. Liu, S. C. Tong, C. L. P. Chen, and D. J. Li, “Neural networks-based adaptive control for nonlinear state constrained systems with input delay,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1249–1258, Apr. 2019. doi: 10.1109/TCYB.2018.2799683
|
[14] |
D. P. Li, D. J. Li, Y. J. Liu, S. C. Tong, and C. L. P. Chen, “Approximation-based adaptive neural tracking control of nonlinear MIMO unknown time-varying delay systems with full state constraints,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3100–3109, Oct. 2017. doi: 10.1109/TCYB.2017.2707178
|
[15] |
J. M. Chen, Q. Tu, Y. Zhang, H. H. Chen, and Y. X. Sun, “Feedback-based clock synchronization in wireless sensor networks: A control theoretic approach,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2963–2973, Jul. 2010. doi: 10.1109/TVT.2010.2049869
|
[16] |
T. Wang, C. Y. Cai, D. Guo, X. M. Tang, and H. Wang, “Clock synchronization in wireless sensor networks: A new model and analysis approach based on networked control perspective,” Math. Probl. Eng., vol. 2014, pp. 731980, Aug. 2014.
|
[17] |
T. Wang, D. Guo, C. Y. Cai, X. M. Tang, and H. Wang, “Clock synchronization in wireless sensor networks: Analysis and design of error precision based on lossy networked control perspective,” Math. Probl. Eng., vol. 2015, pp. 346521, Apr. 2015.
|
[18] |
P. Wang and B. C. Ding, “Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems,” IEEE Trans. Autom. Control, vol. 59, no. 6, pp. 1439–1453, Jun. 2014. doi: 10.1109/TAC.2014.2304175
|
[19] |
M. A. Müller, M. Reble, and F. Allgöwer, “Cooperative control of dynamically decoupled systems via distributed model predictive control,” Int. J. Robust Nonlinear Control, vol. 22, no. 12, pp. 1376–1397, Aug. 2012. doi: 10.1002/rnc.2826
|
[20] |
B. C. Ding and Y. Q. Tang, “A noncooperative distributed model predictive control for constrained linear systems with decoupled dynamics,” in Proc. 34th Chinese Control Conf., Hangzhou, China, 2015, pp. 4084-4090.
|
[21] |
B. C. Ding, L. H. Xie, and W. J. Cai, “Distributed model predictive control for constrained linear systems,” Int. J. Robust Nonlinear Control, vol. 20, no. 11, pp. 1285–1298, Jul. 2009. doi: 10.1002/rnc.1512
|
[22] |
D. Mayne, “Robust and stochastic model predictive control: Are we going in the right direction?” Annu. Rev. Control, vol. 41, pp. 184–192, May 2016. doi: 10.1016/j.arcontrol.2016.04.006
|
[23] |
P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. F. Liu, “Distributed model predictive control: A tutorial review and future research directions,” Comput. Chem. Eng., vol. 51, pp. 21–41, Apr. 2013. doi: 10.1016/j.compchemeng.2012.05.011
|
[24] |
D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, Dec. 2014. doi: 10.1016/j.automatica.2014.10.128
|
[25] |
X. M. Tang and B. C. Ding, “Model predictive control of linear systems over networks with data quantizations and packet losses,” Automatica, vol. 49, no. 5, pp. 1333–1339, May 2013. doi: 10.1016/j.automatica.2013.02.033
|
[26] |
W. L. He, B. Zhang, Q. L. Han, F. Qian, J. Kurths, and J. D. Cao, “Leader-following consensus of nonlinear multiagent systems with stochastic sampling,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 327–338, Feb. 2017.
|
[27] |
W. L. He, G. R. Chen, Q. L. Han, and F. Qian, “Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control,” Inf. Sci., vol. 380, pp. 145–158, Feb. 2017. doi: 10.1016/j.ins.2015.06.005
|
[28] |
X. M. Tang, H. C. Qu, P. Wang, and M. Zhao, “Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays,” ISA Trans., vol. 55, pp. 135–144, Mar. 2015. doi: 10.1016/j.isatra.2014.11.007
|
[29] |
Y. P. Yang, W. L. He, Q. L. Han, and C. Peng, “H ∞ Synchronization of networked master–slave oscillators with delayed position data: The positive effects of network-induced delays,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4090–4102, Dec. 2019. doi: 10.1109/TCYB.2018.2857507
|
[30] |
N. Wang, S. F. Su, X. X. Pan, X. Yu, G. M. Xie, “Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle,” IEEE Trans. Ind. Inform., vol. 15, no. 6, pp. 3502–3513, Jun. 2019. doi: 10.1109/TII.2018.2877046
|
[31] |
N. Wang, S. Su, M. Han, and W. H. Chen, “Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 7, pp. 1322–1337, Jul. 2019. doi: 10.1109/TSMC.2018.2834515
|
[32] |
U. Maeder and M. Morari, “Offset-free reference tracking with model predictive control,” Automatica, vol. 46, no. 9, pp. 1469–1476, Sep. 2010. doi: 10.1016/j.automatica.2010.05.023
|
[33] |
M. G. Forbes, R. S. Patwardhan, H. Hamadah, and R. B. Gopaluni, “Model predictive control in industry: Challenges and opportunities,” IFAC-PapersOnLine, vol. 48, no. 8, pp. 531–538, Dec. 2015. doi: 10.1016/j.ifacol.2015.09.022
|
[34] |
M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Constraint-tightening and stability in stochastic model predictive control,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3165–3177, Jul. 2017. doi: 10.1109/TAC.2016.2625048
|
[35] |
L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent disturbances: Predictive control with restricted constraints,” Automatica, vol. 37, no. 7, pp. 1019–1028, Jul. 2001. doi: 10.1016/S0005-1098(01)00051-6
|
[36] |
D. Q. Mayne and W. Langson, “Robustifying model predictive control of constrained linear systems,” Electron. Lett., vol. 37, no. 23, pp. 1422–1423, Nov. 2001. doi: 10.1049/el:20010951
|
[37] |
D. Q. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, Feb. 2005. doi: 10.1016/j.automatica.2004.08.019
|
[38] |
D. Q. Mayne, S. V. Rakovic, R. Findeisen, and F. Allgöwer, “Robust output feedback model predictive control of constrained linear systems,” Automatica, vol. 42, no. 7, pp. 1217–1222, Jul. 2006. doi: 10.1016/j.automatica.2006.03.005
|
[39] |
S. V. Rakovic, “Robust control of constrained discrete time systems: Characterization and implementation,” Ph.D. dissertation, Imperial College London, London, UK, 2005.
|
[40] |
S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “Invariant approximations of the minimal robust positively Invariant set,” IEEE Trans. Autom. Control, vol. 50, no. 3, pp. 406–410, Mar. 2005. doi: 10.1109/TAC.2005.843854
|
[41] |
D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, Jun. 2000. doi: 10.1016/S0005-1098(99)00214-9
|
[42] |
A. Jadbabaie, J. Yu, and J. Hauser, “Unconstrained receding-horizon control of nonlinear systems,” IEEE Trans. Autom. Control, vol. 46, no. 5, pp. 776–783, May 2001. doi: 10.1109/9.920800
|
[43] |
M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, Oct. 1996. doi: 10.1016/0005-1098(96)00063-5
|