IEEE/CAA Journal of Automatica Sinica
Citation: | Alejandro White, Ali Karimoddini and Mohammad Karimadini, "Resilient Fault Diagnosis Under Imperfect Observations–A Need for Industry 4.0 Era," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1279-1288, Sept. 2020. doi: 10.1109/JAS.2020.1003333 |
[1] |
A. Schumacher, T. Nemeth, and W. Sihn, “Roadmapping towards industrial digitalization based on an industry 4.0 maturity model for manufacturing enterprises,” Procedia CIRP, vol. 79, pp. 409–414, 2019. doi: 10.1016/j.procir.2019.02.110
|
[2] |
E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. 11th IEEE Int. Symp. Object and Component-Oriented Real-Time Distributed Computing, Orlando, USA, 2008, pp. 363–369.
|
[3] |
R. Baheti and H. Gill, “Cyber-physical systems,” in The Impact of Control Technology, T. Samad and A. M. Annaswamy, Eds. New York, USA: IEEE Control Systems Society, 2011, pp. 161–166.
|
[4] |
D. O. M. Sanchez, “Sustainable development challenges and risks of industry 4.0: A literature review,” in Proc. Global IoT Summit, Aarhus, Denmark, 2019, pp. 1–6.
|
[5] |
M. M. Alani and M. Alloghani, “Security challenges in the industry 4.0 era,” in Industry 4.0 and Engineering for a Sustainable Future, M. Dastbaz and P. Cochrane, Eds. Cham, Germany: Springer, 2019, pp. 117–136.
|
[6] |
V. Alcácer and V. Cruz-Machado, “Scanning the industry 4.0: A literature review on technologies for manufacturing systems,” Eng. Sci. Technol.,Int. J., vol. 22, no. 3, pp. 899–919, Jun. 2019.
|
[7] |
S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, “Industrial internet of things and cyber manufacturing systems,” in Industrial Internet of Things, S. Jeschke, C. Brecher, H. B. Song, and D. B. Rawat, Eds. Cham, Germany: Springer, 2017, pp. 3–19.
|
[8] |
R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein, “Future directions in control in an information-rich world,” IEEE Control Syst. Mag., vol. 23, no. 2, pp. 20–33, Apr. 2003. doi: 10.1109/MCS.2003.1188769
|
[9] |
A. D. Pouliezos and G. S. Stavrakakis, Real Time Fault Monitoring of Industrial Processes. Dordrecht, Netherlands: Springer, 1994.
|
[10] |
P. M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results,” Automatica, vol. 26, no. 3, pp. 459–474, May 1990. doi: 10.1016/0005-1098(90)90018-D
|
[11] |
A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0,” Inf. Fusion, vol. 50, pp. 92–111, Oct. 2019.
|
[12] |
J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems. Boston, USA: Springer, 1999.
|
[13] |
V. Venkatasubramanian, R. Rengaswamy, K. W. Yin, and S. N. Kavuri, “A review of process fault detection and diagnosis: Part I: Quantitative model-based methods,” Comput. Chem. Eng., vol. 27, no. 3, pp. 293–311, Mar. 2003.
|
[14] |
A. Bhagwat, R. Srinivasan, and P. R. Krishnaswamy, “Fault detection during process transitions: A model-based approach,” Chem. Eng. Sci., vol. 58, no. 2, pp. 309–325, Jan. 2003. doi: 10.1016/S0009-2509(02)00520-1
|
[15] |
R. Isermann, “Model-based fault-detection and diagnosis - status and applications,” Annu. Rev. Control, vol. 29, no. 1, pp. 71–85, 2005. doi: 10.1016/j.arcontrol.2004.12.002
|
[16] |
S. Rajakarunakaran, P. Venkumar, D. Devaraj, and K. S. P. Rao, “Artificial neural network approach for fault detection in rotary system,” Appl. Soft Comput., vol. 8, no. 1, pp. 740–748, Jan. 2008. doi: 10.1016/j.asoc.2007.06.002
|
[17] |
Y. F. Zhou, J. Hahn, and M. S. Mannan, “Fault detection and classification in chemical processes based on neural networks with feature extraction,” ISA Trans., vol. 42, no. 4, pp. 651–664, Oct. 2003. doi: 10.1016/S0019-0578(07)60013-5
|
[18] |
Y. M. Zhang and J. Jiang, “Issues on integration of fault diagnosis and reconfigurable control in active fault-tolerant control systems,” in Fault Detection, Supervision and Safety of Technical Processes 2006, H. Y. Zhang, Ed. Oxford, UK: Elsevier Science Ltd, 2007, pp. 1437–1448.
|
[19] |
X. D. Zhang, T. Parisini, and M. M. Polycarpou, “Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach,” IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1259–1274, Aug. 2004. doi: 10.1109/TAC.2004.832201
|
[20] |
Y. Zheng, H. J. Fang, and H. O. Wang, “Takagi-sugeno fuzzy-model-based fault detection for networked control systems with Markov delays,” IEEE Trans. Syst.,Man,Cybern.,Part B Cybern., vol. 36, no. 4, pp. 924–929, Aug. 2006. doi: 10.1109/TSMCB.2005.861879
|
[21] |
P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model and strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018. doi: 10.1109/JAS.2017.7510817
|
[22] |
W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree analysis, methods, and applications - a review,” IEEE Trans. Reliab., vol. R-34, no. 3, pp. 194–203, Aug. 1985. doi: 10.1109/TR.1985.5222114
|
[23] |
J. D. Andrews and S. J. Dunnett, “Event-tree analysis using binary decision diagrams,” IEEE Trans. Reliab., vol. 49, no. 2, pp. 230–238, Jun. 2000. doi: 10.1109/24.877343
|
[24] |
D. N. Pandalai and L. E. Holloway, “Template languages for fault monitoring of timed discrete event processes,” IEEE Trans. Autom. Control, vol. 45, no. 5, pp. 868–882, May 2000.
|
[25] |
S. R. Das and L. E. Holloway, “Characterizing a confidence space for discrete event timings for fault monitoring using discrete sensing and actuation signals,” IEEE Trans. Syst.,Man,Cybern. - Part A:Syst. Hum., vol. 30, no. 1, pp. 52–66, Jan. 2000. doi: 10.1109/3468.823481
|
[26] |
M. Gromov and T. A. C. Willemse, “Testing and model-checking techniques for diagnosis,” in Testing of Software and Communicating Systems, A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp, Eds. Berlin, Heidelberg, Germany: Springer, 2007, pp. 138–154.
|
[27] |
F. Cicirelli, A. Furfaro, and L. Nigro, “Model checking time-dependent system specifications using time stream petri nets and uppaal,” Appl. Math. Comput., vol. 218, no. 16, pp. 8160–8186, Apr. 2012.
|
[28] |
U. Lerner, R. Parr, D. Koller, G. Biswas, “Bayesian fault detection and diagnosis in dynamic systems,” in Proc. 17th Nat. Conf. Artificial Intelligence and Twelfth Conf. Innovative Applications of Artificial Intelligence, Austin, USA, 2000, pp. 531–537.
|
[29] |
Z. Simeu-Abazi, M. D. Mascolo, and M. Knotek, “Fault diagnosis for discrete event systems: Modelling and verification,” Reliab. Eng. Syst. Saf., vol. 95, no. 4, pp. 369–378, Apr. 2010.
|
[30] |
M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete event systems using petri nets with unobservable transitions,” Automatica, vol. 46, no. 9, pp. 1531–1539, Sept. 2010.
|
[31] |
R. Ammour, E. Leclercq, E. Sanlaville, and D. Lefebvre, “Datation of faults for markovian stochastic dess,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2961–2967, Jul. 2019.
|
[32] |
J. Lunze, “Discrete-event modelling and fault diagnosis of discretely controlled continuous systems,” in Analysis and Design of Hybrid Systems 2006, C. Cassandras, A. Giua, C. Seatzu, and J. Zaytoon, Eds. Amsterdam, Netherlands: Elsevier, 2006, pp. 229–234.
|
[33] |
K. Schmidt, “Abstraction-based failure diagnosis for discrete event systems,” Syst. Control Lett., vol. 59, no. 1, pp. 42–47, Jan. 2010. doi: 10.1016/j.sysconle.2009.11.004
|
[34] |
G. G. Rigatos, “Fault detection and isolation based on fuzzy automata,” Inf. Sci., vol. 179, no. 12, pp. 1893–1902, May 2009.
|
[35] |
P. Philips, K. B. Ramkumar, K. W. Lim, H. A. Preisig, and M. Weiss, “Automaton-based fault detection and isolation,” Comput. Chem. Eng., vol. 23, no. Suppl, pp. S215–S218, Jun. 1999.
|
[36] |
G. P. Bhandari and R. Gupta, “Fault diagnosis in service-oriented computing through partially observed stochastic petri nets,” Serv. Oriented Comput. Appl., vol. 14, no. 1, pp. 35–47, Mar. 2020. doi: 10.1007/s11761-019-00279-5
|
[37] |
F. Lin, “Diagnosability of discrete event systems and its applications,” Discrete Event Dyn. Syst., vol. 4, no. 2, pp. 197–212, May 1994. doi: 10.1007/BF01441211
|
[38] |
N. Ran, H. Y. Su, and S. G. Wang, “An improved approach to test diagnosability of bounded petri nets,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 297–303, Apr. 2017. doi: 10.1109/JAS.2017.7510406
|
[39] |
R. Su and W. M. Wonham, “Global and local consistencies in distributed fault diagnosis for discrete-event systems,” IEEE Trans. Autom. Control, vol. 50, no. 12, pp. 1923–1935, Dec. 2005. doi: 10.1109/TAC.2005.860291
|
[40] |
C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. 2nd ed. New York, USA: Springer, 2008.
|
[41] |
P. J. G. Ramadge and W. M. Wonham, “The control of discrete event systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989. doi: 10.1109/5.21072
|
[42] |
P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, “Diagnosis of a class of distributed discrete-event systems,” IEEE Trans. Syst.,Man,Cybern.-Part A:Syst. Hum., vol. 30, no. 6, pp. 731–752, Nov. 2000.
|
[43] |
A. Philippot, M. Sayed-Mouchaweh, and V. Carré-Ménétrier, “Unconditional decentralized structure for the fault diagnosis of discrete event systems,” in IFAC Proc. Volumes, vol. 40, no. 6, pp. 67–72, 2007.
|
[44] |
S. Bhattacharyya, R. Kumar, and Z. Huang, “A discrete event systems approach to network fault management: Detection and diagnosis of faults,” Asian J. Control, vol. 13, no. 4, pp. 471–479, Jul. 2011. doi: 10.1002/asjc.349
|
[45] |
S. Bhattacharyya, Z. Huang, V. Chandra, and R. Kumar, “A discrete event systems approach to network fault management: Detection & diagnosis of faults,” in Proc. American Control Conf., Boston, USA, 2004, pp. 5108–5113.
|
[46] |
M. Agarwal, S. Purwar, S. Biswas, and S. Nandi, “Intrusion detection system for PS-Poll DoS attack in 802.11 networks using real time discrete event system,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 792–808, 2017. doi: 10.1109/JAS.2016.7510178
|
[47] |
A. White and A. Karimoddini, “Event-based diagnosis of flight maneuvers of a fixed-wing aircraft,” Reliab. Eng. Syst. Saf., vol. 193, pp. 106609, Jan. 2020. doi: 10.1016/j.ress.2019.106609
|
[48] |
M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1555–1575, Sept. 1995. doi: 10.1109/9.412626
|
[49] |
S. Hashtrudi Zad, R. H. Kwong, and W. M. Wonham, “Fault diagnosis in timed discrete-event systems,” in Proc. 38th IEEE Conf. Decision and Control, Phoenix, USA, 1999, pp. 1756–1761.
|
[50] |
M. M. Karimi, A. Karimoddini, A. P. White, and I. W. Bates, “Event-based fault diagnosis for an unknown plant,” in Proc. IEEE 55th Conf. Decision and Control, Las Vegas, USA, 2016, pp. 7216–7221.
|
[51] |
A. White and A. Karimoddini, “Asynchronous fault diagnosis of discrete event systems,” in Proc. American Control Conf., Seattle, USA, 2017, pp. 3224–3229.
|
[52] |
A. White and A. Karimoddini, “Semi-asynchronous fault diagnosis of discrete event systems,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Budapest, Hungary, 2016, pp. 3961–3966.
|
[53] |
A. White, A. Karimoddini, and R. Su, “Fault diagnosis of discrete event systems under unknown initial conditions,” IEEE Trans. Autom. Control, vol. 64, no. 12, pp. 5246–5252, Dec. 2019. doi: 10.1109/TAC.2019.2912712
|
[54] |
R. Fritz and P. Zhang, “Overview of fault-tolerant control methods for discrete event systems,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 88–95, 2018. doi: 10.1016/j.ifacol.2018.09.533
|
[55] |
J. Dai, A. Karimoddini, and H. Lin, “Achieving fault-tolerance and safety of discrete-event systems through learning,” in Proc. American Control Conf., Boston, USA, 2016, pp. 4835–4840.
|
[56] |
M. Karimadini, A. Karimoddini, and A. Homaifar, “A survey on fault-tolerant supervisory control,” in Proc. IEEE 61st Int. Midwest Symp. Circuits and Systems, Windsor, Canada, 2018, pp. 733–738.
|
[57] |
R. Su, “Distributed trace estimation under timing mismatch and channel distortion,” IEEE Trans. Autom. Control, vol. 53, no. 10, pp. 2409–2414, Nov. 2008. doi: 10.1109/TAC.2008.2007532
|
[58] |
J. C. Basilio and S. Lafortune, “Robust codiagnosability of discrete event systems,” in Proc. American Control Conf., St. Louis, USA, 2009, pp. 2202–2209.
|
[59] |
D. Thorsley, T. S. Yoo, and H. E. Garcia, “Diagnosability of stochastic discrete-event systems under unreliable observations,” in Proc. American Control Conf., Seattle, USA, 2008, pp. 1158–1165.
|
[60] |
L. K. Carvalho, J. C. Basilio, and M. V. Moreira, “Robust diagnosis of discrete event systems against intermittent loss of observations,” Automatica, vol. 48, no. 9, pp. 2068–2078, Sept. 2012. doi: 10.1016/j.automatica.2012.06.042
|
[61] |
L. K. Carvalho, M. V. Moreira, and J. C. Basilio, “Diagnosability of intermittent sensor faults in discrete event systems,” Automatica, vol. 79, pp. 315–325, May 2017. doi: 10.1016/j.automatica.2017.01.017
|
[62] |
S. T. S. Lima, J. C. Basilio, S. Lafortune, and M. V. Moreira, “Robust diagnosis of discrete-event systems subject to permanent sensor failures,” IFAC Proc. Volumes, vol. 43, no. 12, pp. 90–97, 2010. doi: 10.3182/20100830-3-DE-4013.00017
|