IEEE/CAA Journal of Automatica Sinica
Citation: | Abhinoy Kumar Singh, "Major Development Under Gaussian Filtering Since Unscented Kalman Filter," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1308-1325, Sept. 2020. doi: 10.1109/JAS.2020.1003303 |
[1] |
Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Applications to Tracking and Navigation. New York, USA: John Wiley & Sons, 2001.
|
[2] |
R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering. New York, USA: Wiley, 1997.
|
[3] |
B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, USA: Prentice Hall, 1979.
|
[4] |
A. Gelb, Applied Optimal Estimation. Boston, USA: MIT Press, 1974.
|
[5] |
D. Simon, Optimal State Estimation. New Jersey, USA: Wiley, 2006.
|
[6] |
M. Abo, O. W. Marquez, J. McNames, R. Hornero, T. Trong, and B. Goldstein, “Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering,” IEEE Trans. Biomed. Eng., vol. 52, no. 8, pp. 1485–1489, Aug. 2005. doi: 10.1109/TBME.2005.851465
|
[7] |
C. Wells, “The Kalman filter in finance,” Springer, vol. 32, 2013.
|
[8] |
P. L. Houtekamer and H. L. Mitchell, “Data assimilation using an ensemble kalman filter technique,” Mon. Wea. Rev., vol. 126, no. 3, pp. 796–811, Mar. 1998. doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
|
[9] |
S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, USA: Cambridge University Press, 2013.
|
[10] |
A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, USA: Dover Publications, 2007.
|
[11] |
R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960. doi: 10.1115/1.3662552
|
[12] |
D. Godard, “Channel equalization using a Kalman filter for fast data transmission,” IBM J. Res. Dev., vol. 18, no. 3, pp. 267–273, May 1974. doi: 10.1147/rd.183.0267
|
[13] |
R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-6, no. 4, pp. 473–483, Jul. 1970. doi: 10.1109/TAES.1970.310128
|
[14] |
M. Athans, R. P. Wishner, and A. Bertolini, “Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements,” IEEE Trans. Autom. Control, vol. 13, no. 5, pp. 504–514, Oct. 1968. doi: 10.1109/TAC.1968.1098986
|
[15] |
S. K. Rao, “Modified gain extended Kalman filter with application to bearings-only passive manoeuvring target tracking,” IET Proc. Radar Sonar Navig., vol. 152, no. 4, pp. 239–244, Aug. 2005. doi: 10.1049/ip-rsn:20045074
|
[16] |
T. Song and J. Speyer, “A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements,” IEEE Trans. Autom. Control, vol. 30, no. 10, pp. 940–949, Oct. 1985. doi: 10.1109/TAC.1985.1103821
|
[17] |
S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,” in Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 1997.
|
[18] |
S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for the nonlinear transformation of means and covariances in filters and estimators,” IEEE Trans. Autom. Control, vol. 45, no. 3, pp. 477–482, Mar. 2000. doi: 10.1109/9.847726
|
[19] |
S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004. doi: 10.1109/JPROC.2003.823141
|
[20] |
S. J. Julier and J. K. Uhlmann, “Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations,” in Proc.American Control Conf., Anchorage, USA, 2002, pp. 887–892.
|
[21] |
S. J. Julier, “The scaled unscented transformation,” in Proc. American Control Conf., Anchorage, USA, 2002, pp. 4555–4559.
|
[22] |
R. van der Merwe and E. A. Wan, “The square-root unscented kalman filter for state and parameter-estimation,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Salt Lake City, USA, 2001, pp. 3461–3464.
|
[23] |
R. van der Merwe and E. A. Wan, “Efficient derivative-free Kalman filters for online learning,” in Proc. European Symp. Artificial Neural Networks, Bruges, Belgium, 2001, pp. 205–210.
|
[24] |
Y. X. Wu, D. W. Hu, M. P. Wu, and X. P. Hu, “Unscented Kalman filtering for additive noise case: Augmented versus nonaugmented,” IEEE Signal Process. Lett., vol. 12, no. 5, pp. 357–360, May 2005. doi: 10.1109/LSP.2005.845592
|
[25] |
Y. Lei, D. Xia, K. Erazo, and S. Nagarajaiah, “A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems,” Mech. Sys. Sign. Proc., vol. 127, pp. 120–135, Jul. 2019.
|
[26] |
Z. Jiang, Q. Song, Y. Q. He, and J. D. Han, “A novel adaptive unscented Kalman filter for nonlinear estimation,” in Proc. 46th IEEE Conf. Decision and Control, New Orleans, USA, 2007, pp. 4293–4298.
|
[27] |
L. B. Chang, B. Q. Hu, A. Li, and F. J. Qin, “Transformed unscented Kalman filter,” IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 252–257, Jan. 2013. doi: 10.1109/TAC.2012.2204830
|
[28] |
I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009. doi: 10.1109/TAC.2009.2019800
|
[29] |
J. Mu and Y. L. Cai, “Iterated cubature Kalman filter and its application,” in Proc. IEEE Int. Conf. Cyber Tech. in Automation, Control, and Intelligent Systems, Kunming, China, 2011, pp. 33–37.
|
[30] |
P. H. Leong, S. Arulampalam, T. H. Lamahewa, and T. D. Abhayapala, “A Gaussian-sum based cubature Kalman filter for bearings-only tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 1161–1176, Apr. 2013. doi: 10.1109/TAES.2013.6494405
|
[31] |
S. Y. Wang, J. C. Feng, and C. K. Tse, “Spherical simplex-radial cubature Kalman filter,” IEEE Signal Process. Lett., vol. 21, no. 1, pp. 43–46, Jan. 2014. doi: 10.1109/LSP.2013.2290381
|
[32] |
S. Bhaumik and Swati, “Cubature quadrature Kalman filter,” IET Signal Process., vol. 7, no. 7, pp. 533–541, Sept. 2013. doi: 10.1049/iet-spr.2012.0085
|
[33] |
S. Bhaumik and Swati, “Square-root cubature-quadrature Kalman filter,” Asian J. Control, vol. 16, no. 2, pp. 617–622, Mar. 2014. doi: 10.1002/asjc.704
|
[34] |
A. K. Singh and S. Bhaumik, “Transformed cubature quadrature Kalman filter,” IET Sign. Process., vol. 11, no. 9, pp. 1095–1103, Jul. 2017. doi: 10.1049/iet-spr.2017.0074
|
[35] |
B. Jia, M. Xin, and Y. Cheng, “High-degree cubature Kalman filter,” Automatica, vol. 49, no. 2, pp. 510–518, Feb. 2013. doi: 10.1016/j.automatica.2012.11.014
|
[36] |
A. K. Singh and S. Bhaumik, “Higher degree cubature quadrature Kalman filter,” Int. J. Control Autom. Syst., vol. 13, no. 5, pp. 1097–1105, Oct. 2015. doi: 10.1007/s12555-014-0228-8
|
[37] |
K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” IEEE Trans. Autom. Control, vol. 45, no. 5, pp. 910–927, May 2000. doi: 10.1109/9.855552
|
[38] |
I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature,” Proc. IEEE, vol. 95, no. 5, pp. 953–977, May 2007. doi: 10.1109/JPROC.2007.894705
|
[39] |
I. Arasaratnam and S. Haykin, “Square-root quadrature Kalman filtering,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2589–2593, Jun. 2008. doi: 10.1109/TSP.2007.914964
|
[40] |
H. Singer, “Generalized gauss-hermite filtering,” AStA Adv. Stat. Anal., vol. 92, no. 2, pp. 179–195, May 2008. doi: 10.1007/s10182-008-0068-z
|
[41] |
H. Singer, “Conditional Gauss-Hermite filtering with application to volatility estimation,” IEEE Trans. Autom. Contr., vol. 60, no. 9, pp. 2476–2481, Sept. 2015. doi: 10.1109/TAC.2015.2394952
|
[42] |
B. Jia, M. Xin, and Y. Cheng, “Sparse-grid quadrature nonlinear filtering,” Automatica, vol. 48, no. 2, pp. 327–341, Feb. 2012. doi: 10.1016/j.automatica.2011.08.057
|
[43] |
B. Jia, M. Xin, and Y. Cheng, “Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation,” J. Guid. Control Dyn., vol. 34, no. 2, pp. 367–379, Mar-Apr. 2011. doi: 10.2514/1.52016
|
[44] |
B. Jia, M. Xin, and Y. Cheng, “Comparison of the sparse-grid quadrature rule and the cubature rule in nonlinear filtering,” in Proc. IEEE 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp. 6022–6027.
|
[45] |
P. Closas, C. Fernandez-Prades, and J. Vila-Valls, “Multiple quadrature Kalman filtering,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6125–6137, Dec. 2012. doi: 10.1109/TSP.2012.2218811
|
[46] |
R. Radhakrishnan, A. K. Singh, S. Bhaumik, and N. K. Tomar, “Multiple sparse-grid Gauss-Hermite filtering,” Appl. Math. Model., vol. 40, no. 7-8, pp. 4441–4450, Apr. 2016. doi: 10.1016/j.apm.2015.11.035
|
[47] |
A. K. Singh, R. Radhakrishnan, S. Bhaumik, and P. Date, “Adaptive sparse-grid Gauss–Hermite filter,” J. Comput. Appl. Math., vol. 342, pp. 305–316, Nov. 2018. doi: 10.1016/j.cam.2018.04.006
|
[48] |
A. K. Singh and S. Bhaumik, “Nonlinear estimation using transformed Gauss-Hermite quadrature points,” in Proc. IEEE Int. Conf. Signal Processing, Computing and Control, Solan, India, 2013, pp. 1–4.
|
[49] |
A. K. Singh, S. Bhaumik, and R. Radhakrishnan, “Nonlinear estimation with transformed cubature quadrature points, ” in Proc. IEEE Int. Symp. Signal Processing and Information Technology, Noida, India, 2014, pp. 428–432.
|
[50] |
D. Potnuru, K. P. B. Chandra, I. Arasaratnam, D. W. Gu, K. A. Mary, and S. B. Ch, “Derivative-free square-root cubature Kalman filter for non-linear brushless DC motors,” IET Electric Power Appl., vol. 10, no. 5, pp. 419–429, Apr. 2016. doi: 10.1049/iet-epa.2015.0414
|
[51] |
K. P. B. Chandra, D. W. Gu, and I. Postlethwaite, “Square root cubature information filter,” IEEE Sens. J., vol. 13, no. 2, pp. 750–758, Feb. 2013. doi: 10.1109/JSEN.2012.2226441
|
[52] |
X. J. Tang, Z. B. Liu, and J. S. Zhang, “Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation,” Acta Astronaut., vol. 76, pp. 84–94, Jul-Aug. 2012. doi: 10.1016/j.actaastro.2012.02.009
|
[53] |
D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Trans. Autom. Control, vol. 17, no. 4, pp. 439–448, Aug. 1972. doi: 10.1109/TAC.1972.1100034
|
[54] |
P. H. Leong, S. Arulampalam, T. A. Lamahewa, and T. D. Abhayapala, “Gaussian-sum cubature Kalman filter with improved robustness for bearings-only tracking,” IEEE Signal Process. Lett., vol. 21, no. 5, pp. 513–517, May 2014. doi: 10.1109/LSP.2014.2307075
|
[55] |
G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive Gaussian sum filter for nonlinear Bayesian estimation,” IEEE Trans. Autom. Control, vol. 56, no. 9, pp. 2151–2156, Sept. 2011. doi: 10.1109/TAC.2011.2141550
|
[56] |
A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, USA: Academic, 1970.
|
[57] |
J. B. Jorgensen, P. G. Thomsen, H. Madsen, and M. R. Kristensen, “A computationally efficient and robust implementation of the continuous-discrete extended Kalman filter,” in Proc. American Control Conf., New York, USA, 2007, pp. 3706–3712.
|
[58] |
S. Sarkka, “On unscented Kalman filtering for state estimation of continuous-time nonlinear systems,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1631–1641, Sept. 2007. doi: 10.1109/TAC.2007.904453
|
[59] |
I. Arasaratnam, S. Haykin, and T. R. Hurd, “Cubature Kalman filtering for continuous-discrete systems: theory and simulations,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 4977–4993, Oct. 2010. doi: 10.1109/TSP.2010.2056923
|
[60] |
G. Y. Kulikov and M. V. Kulikova, “Accurate numerical implementation of the continuous-discrete extended Kalman filter,” IEEE Trans. Auto. Cont., vol. 59, no. 1, pp. 273–279, Jan. 2014. doi: 10.1016/j.apm.2016.04.016
|
[61] |
S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and S. L. Shah, “Nonlinear Bayesian state estimation: A review of recent developments,” Control Eng. Pract., vol. 20, no. 10, pp. 933–953, Oct. 2012. doi: 10.1016/j.conengprac.2012.04.003
|
[62] |
H. Z. Fang, N. Tian, Y. B. Wang, M. C. Zhou, and M. A. Haile, “Nonlinear Bayesian estimation: From Kalman filtering to a broader horizon,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 2, pp. 401–417, Mar. 2018. doi: 10.1109/JAS.2017.7510808
|
[63] |
H. Kushner, “Approximations to optimal nonlinear filters,” IEEE Trans. Autom. Control, vol. 12, no. 5, pp. 546–556, Oct. 1967. doi: 10.1109/TAC.1967.1098671
|
[64] |
D. Reid, “An algorithm for tracking multiple targets,” IEEE Trans. Autom. Control, vol. 24, no. 6, pp. 843–854, Dec. 1979. doi: 10.1109/TAC.1979.1102177
|
[65] |
R. van der Merwe and E. Wan, “Sigma-point Kalman filters for probabilistic inference in dynamic state-space models,” in Proc. Workshop on Advances in Machine Learning. 2004.
|
[66] |
C. S. Manohar and D. Roy, “Monte Carlo filters for identification of nonlinear structural dynamical systems,” Sadhana, vol. 31, no. 4, pp. 399–427, Aug. 2006. doi: 10.1007/BF02716784
|
[67] |
V. K. Mishra, R. Radhakrishnan, A. K. Singh, and S. Bhaumik, “Bayesian filters for parameter identification of duffing oscillator,” IFAC-PapersOnLine, vol. 51, no. 1, pp. 425–430, Jan. 2018. doi: 10.1016/j.ifacol.2018.05.068
|
[68] |
R. H. Zhan and J. W. Wan, “Iterated unscented Kalman filter for passive target tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 1155–1163, Jul. 2007.
|
[69] |
S. Jafarzadeh, C. Lascu, and M. S. Fadali, “State estimation of induction motor drives using the unscented Kalman filter,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4207–4216, Nov. 2012. doi: 10.1109/TIE.2011.2174533
|
[70] |
P. H. Li, T. W. Zhang, and B. Ma, “Unscented Kalman filter for visual curve tracking,” Image Vision Comput., vol. 22, no. 2, pp. 157–164, Feb. 2004. doi: 10.1016/j.imavis.2003.07.004
|
[71] |
M. Sepasi and F. Sassani, “On-line fault diagnosis of hydraulic systems using unscented Kalman filter,” Int. J. Control Autom. Syst., vol. 8, no. 1, pp. 149–156, Feb. 2010. doi: 10.1007/s12555-010-0119-6
|
[72] |
A. Genz, “Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces,” J. Comput. Appl. Math., vol. 157, no. 1, pp. 187–195, Aug. 2003. doi: 10.1016/S0377-0427(03)00413-8
|
[73] |
A. H. Stroud, Approximate Calculation of Multiple Integrals. Englewood Cliffs, USA: Prentice-Hall, 1971.
|
[74] |
V. I. Krylov, Approximate Calculation of Integrals. New York, USA: Dover, 2006.
|
[75] |
F. B. Hildebrand, Introduction to Numerical Analysis. 2nd ed. New York, USA: McGraw Hill, 1973.
|
[76] |
J. Zarei, E. Shokri, and H. R. Karimi, “Convergence analysis of cubature Kalman filter,” in Proc. European Control Conf., Strasbourg, France, 2014.
|
[77] |
M. Havlicek, K. J. Friston, J. Jan, M. Brazdil, and V. D. Calhoun, “Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering,” NeuroImage, vol. 56, no. 4, pp. 2109–2128, Jun. 2011. doi: 10.1016/j.neuroimage.2011.03.005
|
[78] |
W. L. Li and Y. M. Jia, “Location of mobile station with maneuvers using an IMM-based cubature Kalman filter,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4338–4348, Nov. 2012. doi: 10.1109/TIE.2011.2180270
|
[79] |
Y. Wu, D. Hu, M. Wu, and X. Hu, “A numerical-integration perspective on Gaussian filters,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 2910–2921, Aug. 2006. doi: 10.1109/TSP.2006.875389
|
[80] |
R. Cools and P. Rabinowitz, “Monomial cubature rules since “Stroud”: A compilation,” J. Comput. Appl. Math., vol. 48, no. 3, pp. 309–326, Nov. 1993. doi: 10.1016/0377-0427(93)90027-9
|
[81] |
F. B. Hildebrand, Introduction to Numerical Analysis. 2nd ed. St. Mineola, USA: Dover, 1987.
|
[82] |
S. S. Bonan and D. S. Clark, “Estimates of the Hermite and the Freud polynomials,” J. Approx. Theory, vol. 63, no. 2, pp. 210–224, Nov. 1990. doi: 10.1016/0021-9045(90)90104-X
|
[83] |
Y. H. Ku and M. Drubin, “Network synthesis using legendre and Hermite polynomials,” J. Frank. Inst., vol. 273, no. 2, pp. 138–157, Feb. 1962. doi: 10.1016/0016-0032(62)90646-4
|
[84] |
A. K. Singh, K. Kumar, Swati, and S. Bhaumik “Cubature and quadrature based continuous-discrete filters for maneuvering target tracking,” in Proc. 21st Int. Conf. Information Fusion, Cambridge, 2018.
|
[85] |
S. A. Smolyak, “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Dokl. Akad. Nauk SSSR, vol. 148, no. 5, pp. 1042–1045, 1963.
|
[86] |
T. Gerstner and M. Griebel, “Dimension-adaptive tensor-product quadrature,” Computing, vol. 71, no. 1, pp. 65–87, Aug. 2003. doi: 10.1007/s00607-003-0015-5
|
[87] |
M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration. Hoboken, USA: Wiley, 2001.
|
[88] |
K. J. Astrom, Introduction to Stochastic Control Theory. New York, USA: Dover, 1970.
|
[89] |
G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models,” J. Guid. Control Dyn., vol. 31, no. 6, pp. 1623–1633, Nov.-Dec. 2008. doi: 10.2514/1.36247
|
[90] |
M. Kumar, S. Chakravorty, P. Singla, and J. L. Junkins, “The partition of unity finite element approach with hp-refinement for the stationary Fokker-Planck equation,” J. Sound Vibr., vol. 327, no. 1-2, Oct. 2009.
|
[91] |
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Berlin, Germany: Springer, 1991.
|